

RawMaterials

Connecting matters

Proton exchange membrane fuel cells: rationale, principle of operation and core materials

Marian Chatenet

LEPMI-Phelma **2022-05-16**

Overview:

- > Principle of operation of a PEMFC
- > PEMFC core materials and their main properties
- > Advantages and drawbacks of PEMFCs

A few definitions

• Electrochemical system: converter of chemical energy into electrical energy or reciprocally

- Closed systems:
 - Primary: non rechargeable battery (generator)
 - Secondary: rechargeable battery

Open systems: fuel cells, redox-flow cells, electrolyzers

Redox reactions: H₂-O₂ fuel cells

Positive electrode (O₂/H₂O couple)

$$O_2 + 4 H^+ + 4 e^-$$

 $2 H_2O$

$$O_2 + 2 H_2 O + 4 e^-$$

4 OH-

 $E^0(O_2/H_2O) = 1.23 \text{ V } \text{vs. SHE, acidic medium}$ $E_h^0(O_2/H_2O) = 0.40 \text{ V } vs. \text{ SHE, alkaline medium}$

Negative electrode (H⁺/H₂ couple)

$$2 H_2$$

$$\rightarrow$$

 $2 H_2 \rightarrow 4 H^+ + 4 e^-$

$$2 H_2 + 4 OH^- \rightarrow 4 H_2O + 4 e^-$$

 $E^0(H^+/H_2) = 0.00 \text{ V } vs. \text{ SHE, acidic medium}$ $E_h^0(H^+/H_2) = -0.83 \text{ V } vs. \text{ SHE, alkaline medium}$

The core of the PEMFC: membrane electrode assembly (MEA)

reactant | ionomer | Pt/C should be distributed in the whole active layer thickness/surface

The core of the PEMFC: membrane electrode assembly (MEA)

The MEA structure/composition shall enable optimal (electro)catalytic reactions, whatever the operating conditions:

- > Electrocatalysis!
- > Mass transport
- Heat transfer

- → Proper MEA core materials
- → Proper MEA structure / cell design
- → Proper balance of plant / system

Overview:

- > Principle of operation of a PEMFC
- > PEMFC core materials and their main properties
- > Advantages and drawbacks of PEMFCs

The different materials and architecture of a PEMFC MEA

Gas Diffusion Layers (GDL)

Reagent feeding

Products draining

(water & reagent excess)

Current collecting

Thermal management

Mechanical support

Active Layers (AL)

Electrically

Electrochemical reactions

+ function of the GDL

Membrane

A & C reagent separation

Ionic transport

Electronic insulator

Mechanical support

Carbon

S. Litster, G. McLean, J. Power Sources. 130 (2004) 61

PEM

Layer

The gas diffusion layer

Microporous layer (carbon black + PTFE) = hydrophobicity + feeding/draining at nm scale

Macroporous layer (carbon fibers) = mechanical substrate

The gas diffusion layer ensures numerous properties

- \triangleright Reagent feeding: from the bipolar plate 100 μ m "pores" to the active layer scale 10-50 nm pores
- Products draining: hydrophobicity (water & reagent excess)
- Current collecting: electron percolation small bulk resistivity small interfacial contact resistance
- Thermal management: high thermal conductivity
- Mechanical support

The ionomer and proton exchange membrane (Nafion®)

Proton-exchange perfluorosulfonated polymer

$$\frac{\left(-CF_{2}-CF_{2}\right)_{x}\left(-CF-CF_{2}\right)_{y}}{\left[-CF_{2}CF_{1}\right]_{z}-O(CF_{2})_{2}SO_{3}H^{T}}$$

$$CF_{3}$$

Nafion® structure at different scales

From G. Gebel et al. and D. Kreuer et al. (2000s)

PEM

- Separator (barrier)
- MEA mechanical support
- Polymer proton conductor
- e- insulator

AL ionomer

- Permeable to reactants
- Binder
- Polymer proton conductor
 - → H⁺ percolation for Pt/C

The Pt-based catalyst

Towards large dispersion (lower cost, higher surface area) → nanoparticles of Pt(M)

Required electronic conductivity \rightarrow carbon support \rightarrow Pt(M)/C nanoparticles

5.0 4.5 4.0 3.5 3.0 2.5 mean particle size [nm]

Smaller Pt(M) NPs are less intrinsically active than larger ones for the ORR

SA increases with SAD(111)

SAD(100, e+c)

→ Detrimental role of low-coordination number atoms (e + c)

 \rightarrow d=3.1 ± 1 nm, 3.3 ± 0.7 nm, 3.8 ± 1.7 nm, 4.7 ± 2.7 nm

Strategies towards "superactive" ORR electrocatalysts

Pt utilization in the catalyst layer

To be active, Pt(M) NPs need to satisfy the triple contact conditions

$$u = \frac{SA_{used}}{SA_{theoretical}} \xrightarrow{\qquad} \text{Practical}$$

$$\longrightarrow \text{Theoretical}$$

 u_{Pt} accounts for H⁺/e- percolation at Pt/C in PEMFC MEAs (static vision)...

→ active area of electrocatalyst

...but not for mass-transport (dynamic operation)
→ electrochemical performance

Membrane Catalyst Layer Diffusion Layer

Low Nafion® content: ionic percolation

(a)

Optimal Nafion® content

(b)

(c)

Pt effectiveness in the catalyst layer: diffusion to catalytic site!

To provide current, utilized Pt(M) NPs need to be accessible to reactants

The MEA shall contain...

- Small pores for active area (Pt dispersion)
- Large pores for mass-transport

Pore diameter CA#1 > CA#2 (pristine CA)

Pore diameter CA#2 > CA#1 (active layer: Nafion® plugs CA#1 porosity)

PEMFC MEA \rightarrow O₂ diffusion in gas pores \rightarrow CA#2 favoured

The key parameter is NOT the C-substrate porosity but the AL porosity

→ Taylored porous materials necessary

→ Taylored ink & electrode processing mandatory

Courtesy of Plamen Atanassov
– Univ. New Mexico, USA

Pt/carbon aerogel active layers: importance of the AL porosity on PEMFC performances

J. Marie, M. Chatenet et al. (2000s)

but also...

Y. Garsany et al. *J. Electrochem. Soc.* **165** (2018) F381 V. Yarlagadda et al. *ACS Energy Lett.* **3** (2018) 618

The MEA structure/composition drives the PEMFC initial performances

Fig. 9. Cell potential vs. current density characteristic curve of a typical PEM membrane-electrode assembly, with the nature and order of magnitude of the different overvoltages. From [26], with permission.

The MEA structure / composition shall enable optimal (electro)catalytic reactions, whatever the operating conditions

- Electrocatalysis of ORR (and HOR)
- Electrical / proton conductivities
- Mass transport / water management

The unit cell voltage - thermodynamics

Anode

$$H_2 \leftrightarrow 2 H^+ + 2 e^-$$

$$(E^0 = 0 \text{ V } vs \text{ SHE})$$

Gas Diffusion Layer Membrane

with Catalyst

Gas Diffusion Layer

with Catalyst

Bipolar-Plate

Cathode

$$\frac{1}{2}$$
 O₂ + 2 H⁺ + 2 e⁻ \leftrightarrow H₂O

$$(E^0 = 1.23 \text{ V } vs \text{ SHE})$$

$$E^{\text{eq}-} = E^{0-} + \frac{RT}{2F} \ln \frac{a_{\text{H}^{+}}^{2}}{a_{\text{H}_{2}}} = 0 + \frac{0.059}{2} \log \frac{a_{\text{H}^{+}}^{2}}{a_{\text{H}_{2}}}$$

$$E^{\text{eq+}} = E^{0+} + \frac{RT}{2F} \ln \frac{a_{\text{O}_2} a_{\text{H}^+}^2}{a_{\text{H}_2\text{O}}} = 1,23 + \frac{0.059}{2} \log \frac{a_{\text{O}_2} a_{\text{H}^+}^2}{a_{\text{H}_2\text{O}}}$$

Bipolar-Plate

(Anode)

Nernst law @ 298 K

Unit cell:

- \triangleright E° = standard potential
- $\triangleright E^{eq}$ = equilibrium potential

The unit cell voltage - kinetics

Out of equilibrium $(j \neq 0)$: $E(j) = E^{eq} - \eta_{act} - \eta_{ohm} - \eta_{conc,diff} < E^{eq}$

 $E^{eq} = E_{i=0} = f(thermodynamic)$

 $\eta_{act} = f(S_{act}, electrocatalysis); \eta_{act} = \eta_a + \eta_c \text{ (anode & cathode activation)}$

 $\eta_{\text{ohm}} = f(R_{\text{ions}} \& R_{\text{e-}})$ in the membrane, the electrodes, at the contacts...

 $\eta_{\text{conc,diff}}$ = f([reactants]) = oxygen, hydrogen, protons + influence of liquid water

 $O_2 + 4 H^+ + 4 e^- \leftrightarrow 2 H_2O$

In pratice, a unit cell operates at a voltage below 1 V

 $U^{pr} = \Delta E^{pr} \approx 0.6 - 1 \text{ V}$

The efficiency of a PEMFC **Feet (V)**

- Thermodynamics: $\varepsilon_{rev} = \Delta G / \Delta H$ (= 83 % for H₂ @ 25°C)
- Kinetics:
 - Arr Potential : ε_E = *E*(*j*) / *E*^{eq} (40 60 %)
 - Faradaic: $ε_F = Q(j) / Q_{th}$ (≈ 100 % all H₂ is used)

Evolution of E_{eq} with $T - H_2 / O_2$ fuel cell

Efficiency of PEMFC module:

$$\varepsilon_{PEMFC} = E(j) \times Q(j) / (-\Delta H) = \varepsilon_{rev} \varepsilon_{E} \varepsilon_{F} \approx 50-55\%$$

Efficiency of PEMFC system:

 $\varepsilon_{\text{system}} = \varepsilon_{\text{PEMFC}} \times \varepsilon_{\text{annexes}} \approx 45-50\%$

Towards PEMFC stacks

- \nearrow voltage \Rightarrow series assembly (filter press)
- \nearrow current \Rightarrow \nearrow electrode surface area
- 7 power \Rightarrow large area electrodes + cells in series

⇒ Bipolar plates (BP)

BPs ensure inlet/outlet for each unit cell

PEMFC should be durable (in theory) but do age...

> The (local & global) PEMFC performances are linked to the materials degradation (PEM, GDL and AL all degrade)

- 2. J. Durst et al., Appl. Catal. B: Environmental 138–139 (2013) 416.
- 3. L. Dubau et al., Int. J. Hydrogen Energ., 39 (2014) 21902.

Overview:

- Principle of operation of a PEMFC
- > PEMFC core materials and their main properties
- > Advantages and drawbacks of PEMFCs

Conclusion: advantages of PEMFC

- Direct conversion of chemical energy into electricity
 - Small emission of pollutant (zero if H₂ from renewable origin)
 - Larger efficiency

versus internal combustion engines

- Fuel / Oxidant stored out of the conversion system
 - Optimization of the cell / stack to the desired power
 - Autonomy tailored on demand (size of H₂ tank or frequency of refuelling)
 - Fast refuelling (stationary operation possible)
 - (Relative) safety of operation (even in case of thermal runaway)
- Core materials (in principle) not consumed / altered in operation
- All solid cell
 - No leak of corrosive liquid
 - Physical integrity / stability
 - Operation in all "positions"

versus batteries

Conclusion: drawbacks of PEMFC

- Complex management of fluxes
 - Reactants
 - Products (liquid water at cathode / anode, accumulated N₂ at anode, etc.)
- Cost of core materials, assembly and processes of manufacturing
 - Pt-based catalysts
 - F-based ionomer / membrane
 - Gas-diffusion layers
 - (Sub)gaskets
 - Bipolar plates
- Complexity of the system design / production / implementation
- Practical durability in operation

Extra:

- > Principle of operation of a PEMFC
- > PEMFC core materials and their main properties
- > Advantages and drawbacks of PEMFCs
- > The global context and why PEMFC (and PEMWE) are useful

The global context: link between growth and energy consumption

Evolution of the consumption of primary energy per capita & day 1,2 and of the human development index (HDI) 3 in USA since 1700

HDI versus primary energy consumption

1850 - 1970 : industrial development and growth of energy consumption

- → economic & social development
- → waste of natural resources, pollution, climate change, etc.
- 1. White, L. A., The Evolution of Culture: The Development of Civilization to the Fall of Rome; McGraw-Hill, 1959.
- 2. Kremer, M., Quaterly Journal of Economics **1993**, 108, 681-716.
- 3. Goklany, I. M., The Improving State of the World: Why We're Living Longer, Healthier, More Comfortable Lives on a Cleaner Planet Cato Institute, 2007.

The global context: origin of the climate change

The global context: origin of the climate change

The 30 largest CO₂-emiter countries

Electricity production + transport

> 50% CO₂ emissions

\[
\sum_{\psi}
\]

Our energy policy must be changed !!!

\[
\sum_{\psi}
\]

Renewable energies

Renewable energies and the need for their storage

Illustration of the intermittency of photovoltaic production (Myrthe site, Corsica, France)

Renewable electricity is intermittent...

... storing it (large amounts & long term) is mandatory!

- Pumped hydroelectricity (dams + reversible turbines) saturated...
- Batteries too costly and not durable
- Water electrolyzers + Fuel cells

Water electrolyzers & fuel cells coupled to renewable energies

UMR CNRS 6134 - Sciences Pour l'Environnement

PLATEFORME MYRTE

Mission hYdrogène Renouvelable pour l'inTégration au réseau Electrique

Water electrolyzers & fuel cells coupled to renewable energies

UMR CNRS 6134 - Sciences Pour l'Environnement

PLATEFORME MYRTE

Mission hYdrogène Renouvelable pour l'inTégration au réseau Electrique

- > 9000 m² solar panels
 - > 560 kW production (peak)
 - Instantaneous consumption + excess???
- **Electrolyzer + storage** (40 bar $2 H_2 + O_2$)
 - > Storage 2 $H_2 + O_2 \Leftrightarrow 22 \text{ h}$ autonomy of PEMFC
- Fuel cell (PEMFC) 200 kW
 - Enables electrical production peaks (when necessary)

P-t-G + PEMFC
enables to adapt the
production of
electricity to the
demand without
oversizing the solar
panels...

The small world of PEMFCs: mobility and stationary power

Fuel Cells and the Cars of Tomorrow:

Worldwide, before 2019
Courtesy of Plamen Atanassov – UCI, USA

In France, since 2019

