

Materiali per l'Energetica

Introduction and Background

A major effort is currently undertaken by the EU to modernize its whole energy sector. In detail, in the short-to-medium timescale (up to 2020-2030):

- The share of electrical power in the total energy consumption is expected to rise significantly;
- By 2030, at least 35% of the electrical power will be obtained from intermittent renewable sources (wind and the sun);
- The wide electrification of the surface transportation has to start as soon as possible.

Overarching challenges

- Significant time lags between the generation of energy and its demand by the users
- Necessity to achieve: ✓ fast response times;
 - √ high energy capacities;
 - √ high energy and power densities at an acceptable cost.

Urgent need to achieve innovative conversion and storage energy systems

Main Electricity Storage Technologies

1		7
	1	

MECHANICAL storage

Pumped hydro storage (PHS)

Compressed air energy storage (CAES) (& advanced concepts)

Flywheel energy storage (FES)

THERMAL storage

Hot-water storage

Molten-salt energy storage (MSES)

- Phase change material storage (PCM)

ELECTRICAL storage

- Supercapacitors (SC)
- Superconducting magnetic energy storage (SMES)

ELECTROCHEMICAL storage

- Fuel Cells and Electrolyzers (FC and EL)
- Lithium-ion batteries (Li-ion)
- Vanadium redox-flow batteries (VRB)

5

CHEMICAL storage

- Hydrogen
- Synthetic natural gas (SNG)
- Other chemical compounds (Ammonia, Methanol...)**

Source: Schlumberger Business Consulting (SBC) Energy Institute Analysis; EPRI (2010), "Electricity Energy Storage Technology Options", Bradbury (2010), "Energy Storage Technology Review"

Background

The fundamentals of the electrochemical processes taking place at the electrodes are discussed, with a detailed analysis of the thermodynamics, between the kinetics interplay and electrochemistry of the various phenomena

Program, part I: Batteries

Primary and secondary batteries: materials, methods and devices

- Solid Electrolytes: Synthesis and properties;
- Conventional and innovative electrode materials: synthesis and properties;
- ✓ Structural and morphological characterization techniques;
- ✓ Electrochemical characterization;
- Devices and figures of merit;
- Primary batteries: materials, devices and electrochemical processes;
- Secondary batteries: materials, devices and electrochemical processes.

Program, part II: Fuel Cells

❖ Part II. Fuel cells and electrolysers

- Fuel cells: types and characteristics;
- Electrolysers: types and characteristics;
- ✓ Devices and figures of merit;
 - ☐ Electrolytes;
 - Electrocatalysts;
 - Structural and morphological characterization of materials;
 - Electrochemical and electrical characterization;
 - Membrane-electrode assembly (MEA);
 - ☐ Single cells and stacks.

Program, part III: Open Batteries

Part III. Open Batteries: Materials, methods and devices

- Electrolytes: Synthesis and properties;
- Conventional and innovative electrode materials: synthesis and properties;
- ✓ Techniques for electrochemical characterization;
- Devices and figures of merit.

