Foglio di esercizi 8

Esercizio 1 Calcolare il determinante delle seguenti matrici

$$\left(\begin{array}{cccc} 2 & 1 \\ 1 & 2 \end{array}\right) \qquad , \qquad \left(\begin{array}{ccccc} 0 & 1 & 0 & -1 \\ 2 & 3 & 1 & 1 \\ 0 & -1 & 3 & 1 \\ 1 & 0 & -2 & 0 \end{array}\right) \qquad , \qquad \left(\begin{array}{ccccc} 1 & 2 & 0 \\ 0 & -1 & 3 \\ 4 & 1 & 2 \end{array}\right).$$

Esercizio 2 Determinare quale delle seguenti matrici sono invertibili e calcolarne l'inversa.

$$\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} , \quad \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} , \quad \begin{pmatrix} 1 & 4 \\ 1 & 2 \end{pmatrix} , \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 1 & -1 & -1 \end{pmatrix} ,$$

$$\begin{pmatrix} 3 & 2 & 1 \\ 1 & 3 & 2 \\ 2 & 1 & 3 \end{pmatrix} , \quad \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & -1 & 0 \\ 1 & 0 & -2 & 0 \end{pmatrix} , \quad \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix} .$$

Esercizio 3 Sia

$$A_k = \left(\begin{array}{ccc} 1 & 2 & k \\ k-1 & 1 & 2 \\ 1 & -1 & 2-k \end{array} \right).$$

- (a) Determinare per quali valori di k l'endomorfismo di \mathbb{R}^3 rappresentato da A_k non è iniettivo.
- (b) Per tali valori calcolare una base di $\ker A_k$ e una base di $\operatorname{Im} A_k$.
- (c) Per i valori di k per i quali A_k è iniettivo, trovare le soluzioni del sistema lineare

$$A_k \left(\begin{array}{c} x \\ y \\ z \end{array} \right) = \left(\begin{array}{c} 1 \\ -2 \\ 0 \end{array} \right).$$

Esercizio 4 Sia $\mathcal{A} = \{(1,1,1), (2,1,0), (0,-1,2)\}$ e sia $\mathcal{B} = \{(3,1,0), (0,-1,3), (-1,-1,-1)\}$.

- (a) Verificare che \mathcal{A} e \mathcal{B} sono basi di \mathbb{R}^3 .
- (b) Determinare la matrice di passaggio da \mathcal{A} a \mathcal{B} e la matrice di passaggio da \mathcal{B} ad \mathcal{A} (suggerimento: calcolare la matrice di passaggio da \mathcal{A} alla base canonica e la matrice di passaggio dalla base canonica a \mathcal{B}).

Esercizio 5 Siano U = <(1,1,1), (2,1,0) > e V = <(0,1,-2) >.

- (a) Verificare che $U \oplus V = \mathbb{R}^3$.
- (b) Calcolare la matrice rispetto alla base canonica della simmetria $\sigma: \mathbb{R}^3 \to \mathbb{R}^3$ di asse U e direzione V.

Esercizio 6 Sia $\phi_a : \mathbb{R}^3 \to \mathbb{R}^3$ tale che $\phi_a(x, y, z) = (x + ay, (1 - a)y + z, ax + y + 2z)$.

- (a) Determinare la matrice associata a ϕ_a rispetto alla base canonica di \mathbb{R}^3 .
- (b) Determinare per quali valori del parametro a l'endomorfismo ϕ_a non è suriettivo.
- (c) Per i valori di a per i quali ϕ_a non è suriettivo, determinare una base di $\text{ker}\phi_a$ ed una base di $\text{Im}\phi_a$.
- (d) Determinare la matrice associata a ϕ_a rispetto alla base $\mathcal{A} = \{(1,1,1), (2,1,0), (0,-1,2)\}$ di \mathbb{R}^3 .

1