Sensorless control of synchronous machines with high frequency voltage injection

Virginia Manzolini

Electric Drives Laboratory Department of Industrial Engineering University of Padova, Italy

6th December 2019

- HF Voltage Injection
- Convergence range extension

Outline

- Reluctance machine review
- Introduction: key concepts of sensorless operation
- Convergence of HF voltage injection:
 - ideal case: no iron saturation, no cross-saturation
- $\lambda_d = L_d i_d$ $\lambda_q = L_q i_q$

constant inductances
 with cross-coupling

- $\lambda_d = L_d i_d + L_{dq} i_q$ $\lambda_q = L_{dq} i_d + L_q i_q$
- **real case**: with iron saturation with cross-saturation
- $\lambda_d = \lambda_d(i_d, i_q)$ $\lambda_q = \lambda_q(i_d, i_q)$

Reluctance machine review

Introduction

HF Voltage Injection

For the sake of simplicity the **reluctance machine** can be considered as an **IPM machine without permanent magnets**.

Electrical balance of the machine

$$\begin{cases} u_d = Ri_d + \frac{d\lambda_d}{dt} - \omega_{me}\lambda_q \\ u_q = Ri_q + \frac{d\lambda_q}{dt} + \omega_{me}\lambda_d \\ \int \lambda_d = L_d i_d \end{cases}$$

 $\lambda_q = L_q i_q$

Flux/current relationship

Introduction

HF Voltage Injection

Convergence range extension

 $egin{aligned} M &= rac{3}{2} p(\lambda_d i_q - \lambda_q i_d) \ &= rac{3}{2} p(L_d - L_q) i_d i_q \end{aligned}$

In this lecture the **reluctance machine** is used as a **case study**.

EDLab Padova

Introduction

HF Voltage Injection

HF Voltage

Convergence

nova

Sensorless drive scheme

General scheme -> it does not depend on the estimation algorithm.

- The **speed loop** is **neglected** and it is assumed that the d and q current references are given.
- Current control loops are considered at steady state with no error $i_d^{\chi} = i_d^*$ and $i_q^{\chi} = i_q^*$

HF Voltage

Convergence

Sensorless drive scheme

General scheme -> it does not depend on the estimation algorithm.

- The **speed loop** is **neglected** and it is assumed that the d and q current references are given.
- Current control loops are considered at steady state with no error $i_d^x = i_d^*$ and $i_q^x = i_q^*$

Sensorless drive scheme

General scheme -> it does not depend on the estimation algorithm.

- The speed loop is neglected and it is assumed that the d and q current references are given.
- Current control loops are considered at steady state with no error $i_d^{\chi} = i_d^*$ and $i_a^{\chi} = i_a^*$

$$I_q - I_q$$

Introduction

- HF Voltage Injection
- Convergence range extension

Correct estimation $\Delta \vartheta = 0$

Introduction

DEPARTMENT of INDUSTRIAL ENGINEERING

EDLab Dadova

- HF Voltage Injection
- Convergence range extension

- The estimated, $d^{x}q^{x}$, and actual, dq, axis coincide.
- The actual current vector applied to the machine is the desired one $i^{\bar{x}} = i^{\bar{*}}$

With estimation error $\Delta \vartheta \neq 0$

Introduction

DEPARTMENT of INDUSTRIAL ENGINEERING

nova

- HF Voltage Injection
- Convergence range extension

- With an estimation error the reference frames are different.
- The control is **based only on** the estimated position ϑ_{me}^{x} and thus on the **estimated axis** $d^{x}q^{x}$.

With estimation error $\Delta \vartheta \neq 0$

The currents in the estimated reference frame are controlled to their references

$$i_d^x = i_d^*$$
 and $i_q^x = i_q^*$

Introduction

DEPARTMENT of NDUSTRIAL

ENGINEERING

EDLab Padova

d

- HF Voltage Injection
- Convergence range extension

With estimation error $\Delta \vartheta \neq 0$

 However, in the actual reference frame the current vector is different from the desired one

 $i_d \neq i_d^*$ and $i_q \neq i_q^*$

As the estimation error Δϑ increases the working point tracks a circle counter clockwise in the d-q plane.

Introduction

DEPARTMENT of NDUSTRIAL ENGINEERING

- HF Voltage Injection
- Convergence range extension

DEPARTMENT of

Introduction

HF Voltage Injection

Convergence range extension

Sensorless operation

The **currents** in the actual reference frame i_d and i_q are related to their **references** i_d^* and i_q^* through a **rotation** of $\Delta \vartheta$ represented by the rotation matrix $R(\Delta \vartheta)$.

$$\begin{bmatrix} i_d \\ i_q \end{bmatrix} = R(\Delta \vartheta) \begin{bmatrix} i_d^* \\ i_q^* \end{bmatrix} = \begin{bmatrix} \cos(\Delta \vartheta) & -\sin(\Delta \vartheta) \\ \sin(\Delta \vartheta) & \cos(\Delta \vartheta) \end{bmatrix} \begin{bmatrix} i_d^* \\ i_q^* \end{bmatrix}$$

The reference current vector can be written in **polar coordinates**

 $i_d^* = |i^*| \cos(\vartheta^*)$ $i_q^* = |i^*| \sin(\vartheta^*)$

So the **actual working point** of the machine can be written as a **function** of the **reference current** vector $i^* = (|i^*|, \vartheta_i^*)$ and of the position **estimation error** $\Delta \vartheta$.

$$egin{bmatrix} i_d \ i_q \end{bmatrix} = egin{bmatrix} f(|i^*|,artheta_i^*,\Deltaartheta) \ g(|i^*|,artheta_i^*,\Deltaartheta) \end{bmatrix}$$

M

DEPARTMENT of INDUSTRIAL ENGINEERING

Sensorless operation

Consequences of position estimation error:

• **Reduced Efficiency**: even if the control algorithm commands a working point on the MTPA, in presence of an estimation error the machine works on another, less efficient, point.

Introduction

HF Voltage Injection

Convergence range extension • **Poor Speed/Torque control**: torque is different in different points of the *dq* plain. With significant position estimation error the torque can change its sign leading to the loss of control of the drive.

C)

High Frequency Voltage Injection Position Estimation

Introduction

HF Voltage Injection

The currents of a sensorless drive with high frequency injection are made of two terms

Notation

 $i_d = I_d + i_{hd}$ $i_q = I_q + i_{hq}$

- low frequency term (I_d, I_q) -> working point defined by the speed and current control
- high frequency term (*i_{hd}*, *i_{hq}*) -> due to the injection for the position estimation

The reference current vector refers to the low frequency currents

$$\bar{I^*} = (I^*_d, I^*_q) = (|I^*|, \vartheta^*_I)$$

Two reference frames are used

• actual frame with angle $\vartheta_{me} \rightarrow \overline{i}_h = (i_{hd}, i_{hq}) = (|i_h|, \vartheta_{hi})$ and $\overline{I} = (I_d, I_q) = (|I|, \vartheta_I)$

• estimated frame with angle $\tilde{\vartheta}_{me} \rightarrow \bar{i}_{h}^{x} = (i_{hd}^{x}, i_{hq}^{x}) = (|i_{h}^{x}|, \vartheta_{hi}^{x})$ and $\bar{I}^{x} = (I_{d}^{x}, I_{q}^{x}) = (|I^{x}|, \vartheta_{I}^{x})$

Introduction

HF Voltage Injection

HF Voltage Injection: pulsating flux vector

High frequency sinusoidal voltages are injected into the stator windings

$$u_{hd}^{x} = U_{hd} \cos(\omega_{h} t)$$

 $u_{hq}^{x} = U_{hq} \sin(\omega_{h} t)$

and, if the relationship $U_{hq} = U_{hd} \frac{\omega_{me}}{\omega_h}$ is observed, result in the following **high frequency pulsating flux vector**

$$\lambda_{hd}^{x} = \Lambda_{hd} \sin(\omega_{h}t) = \frac{U_{hd}}{\omega_{h}} \sin(\omega_{h}t)$$

 $\lambda_{hq}^{x} = \Lambda_{hq} \cos(\omega_{h}t) = 0$

The injection induces high frequency currents in the stator windings.

Introduction

HF Voltage Injection

Ideal case: current response

Assumptions:

- NO iron saturation $\rightarrow L_d$ and L_q are constant
- NO cross-coupling $\rightarrow L_{dq} = 0$

The **flux/current relationship** is used to calculate the resulting high frequency current.

Introduction

HF Voltage Injection

Convergence range extension

$$\begin{bmatrix} \lambda_{hd} \\ \lambda_{hq} \end{bmatrix} = \underbrace{\begin{bmatrix} L_d & 0 \\ 0 & L_q \end{bmatrix}}_{L} \begin{bmatrix} i_{hd} \\ i_{hq} \end{bmatrix}$$

Vectors in the actual frame are obtained from the ones in the estimated frame through a rotation of $\Delta \vartheta$ so the flux/current relationship becomes

$$\begin{bmatrix} \lambda_{hd}^{x} \\ \lambda_{hq}^{x} \end{bmatrix} = \underbrace{R(-\Delta\vartheta) \begin{bmatrix} L_{d} & 0 \\ 0 & L_{q} \end{bmatrix} R(\Delta\vartheta)}_{L^{x}} \begin{bmatrix} i_{hd}^{x} \\ i_{hq}^{x} \end{bmatrix}$$

where $R(\Delta \vartheta)$ is a rotation matrix.

$L^{x} = \begin{bmatrix} L_{\Sigma} - L_{\Delta} \cos(2\Delta\vartheta) & L_{\Delta} \sin(2\Delta\vartheta) \\ L_{\Delta} \sin(2\Delta\vartheta) & L_{\Sigma} + L_{\Delta} \cos(2\Delta\vartheta) \end{bmatrix}$ with $L_{\Sigma} = \frac{(L_{q} + L_{d})}{2}$ and $L_{\Delta} = \frac{(L_{q} - L_{d})}{2}$

The flux/current relationship can be inverted and the high frequency flux vector substituted into the equation

$$\begin{bmatrix} \dot{I}_{hd}^{x} \\ \dot{I}_{hq}^{x} \end{bmatrix} = (L^{x})^{-1} \begin{bmatrix} \lambda_{hd}^{x} \\ \lambda_{hq}^{x} \end{bmatrix} = (L^{x})^{-1} \begin{bmatrix} \frac{U_{hd}}{\omega_{h}} \sin(\omega_{h}t) \end{bmatrix}$$

leading to the following expression for the high frequency currents

$$i_{hd}^{x} = \frac{U_{hd}}{\omega_{h}L_{d}L_{q}}[L_{\Sigma} - L_{\Delta}\cos(2\Delta\vartheta)]\sin(\omega_{h}t)$$

$$i_{hq}^{x} = -\frac{U_{hd}}{\omega_{h}L_{d}L_{q}}[L_{\Delta}\sin(2\Delta\vartheta)]\sin(\omega_{h}t)$$

$$I_{hq}^{x} = -\frac{U_{hd}}{\omega_{h}L_{d}L_{q}}[L_{\Delta}\sin(2\Delta\vartheta)]\sin(\omega_{h}t)$$

The *q* current amplitude I_{hq} contains position information.

Introduction

HF Voltage Injection

HF Voltage Injection

Convergence range extension

In order to get the position estimation

- a **demodulator** extracts *I*_{hq}
- that is **nullified** by a **2 state observer**.

$$I_{hq} = -\frac{U_{hd}}{\omega_h L_d L_q} [L_\Delta \sin(2\Delta \vartheta)] = 0$$

• with $I_{hq} > 0 \rightarrow \tilde{\vartheta}_{me}$ increases $\rightarrow \Delta \vartheta = \tilde{\vartheta}_{me} - \vartheta_{me}$ increases • with $I_{hq} < 0 \rightarrow \tilde{\vartheta}_{me}$ decreases $\rightarrow \Delta \vartheta = \tilde{\vartheta}_{me} - \vartheta_{me}$ decreases

HF Voltage Injection

Convergence range extension

By nullifying I_{hq} **4 convergence points** can be found:

• 2 stable points $\Delta \vartheta = 0$ and $\Delta \vartheta = \pi$ • 2 unstable points $\Delta \vartheta = \frac{\pi}{2}$ and $\Delta \vartheta = \frac{3\pi}{2}$

HF Voltage Injection

HF Voltage Injection

- In IPM machine specific techniques are necessary to distinguish between the stable points.
- In SyR it is not necessary since the rotor is symmetrical.

HF Voltage Injection

Convergence range extension

Convergence map in the I_d - I_q plane

The reference current vector is assumed to be taken on the MTPA

 $\vartheta_I^* = \vartheta_{MTPA}$

HF Voltage Injection

Convergence range extension

Convergence map in the I_d - I_q plane

Every point of the plane $(I_d, I_q) = (|I|, \vartheta_I)$ is the working point of the sensorless drive obtained when

- the amplitude of the reference current is $|I^*| = |I|$
- the estimation error is $\Delta \vartheta = \vartheta_I^* \vartheta_I = \vartheta_{MTPA} \vartheta_I$

HF Voltage Injection

l_{hq}

-180

Introduction

HF Voltage Injection

Convergence range extension

Given $\Delta \vartheta$ it is possible to calculate the I_{hq} for every point of the plane.

No estimation error is present and the control is able to drive the machine in the desired working points

With cross-coupling: current response

Assumptions:

- NO iron saturation $-> L_d$ and L_q are constant
- With cross-coupling $\rightarrow L_{dq} \neq 0$ constant

The **flux/current relationship** is used to calculate the resulting high frequency current.

Introduction

HF Voltage Injection

Convergence range extension

$$\begin{bmatrix} \lambda_{hd} \\ \lambda_{hq} \end{bmatrix} = \underbrace{\begin{bmatrix} L_d & L_{dq} \\ L_{dq} & L_q \end{bmatrix}}_{L} \begin{bmatrix} i_{hd} \\ i_{hq} \end{bmatrix}$$

Vectors in the actual frame are obtained from the vector in the estimated frame through a rotation of $\Delta \vartheta$ so the flux/current relationship becomes

$$\begin{bmatrix} \lambda_{hd}^{x} \\ \lambda_{hq}^{x} \end{bmatrix} = \underbrace{R(-\Delta\vartheta) \begin{bmatrix} L_d & L_{dq} \\ L_{dq} & L_q \end{bmatrix} R(\Delta\vartheta)}_{L^{x}} \begin{bmatrix} i_{hd}^{x} \\ i_{hq}^{x} \end{bmatrix}$$

where $R(\Delta \vartheta)$ is a rotation matrix.

$$L^{x} = \begin{bmatrix} L_{\Sigma} - L_{\Delta} \cos(2\Delta\vartheta) + L_{dq} \sin(2\Delta\vartheta) & L_{\Delta} \sin(2\Delta\vartheta) + L_{dq} \cos(2\Delta\vartheta) \\ L_{\Delta} \sin(2\Delta\vartheta) + L_{dq} \cos(2\Delta\vartheta) & L_{\Sigma} + L_{\Delta} \cos(2\Delta\vartheta) - L_{dq} \sin(2\Delta\vartheta) \end{bmatrix}$$

with $L_{\Sigma} = \frac{(L_{d} + L_{q})}{2}$ and $L_{\Delta} = \frac{(L_{q} - L_{d})}{2}$

The flux/current relationship can be inverted and the pulsating flux vector substituted into the equation

$$\begin{bmatrix} i_{hd}^{x} \\ i_{hq}^{x} \end{bmatrix} = (L^{x})^{-1} \begin{bmatrix} \lambda_{hd}^{x} \\ \lambda_{hq}^{x} \end{bmatrix} = (L^{x})^{-1} \begin{bmatrix} \frac{U_{hd}}{\omega_{h}} \sin(\omega_{h}t) \end{bmatrix}$$

leading to the following expression for the high frequency currents

$$i_{hd}^{x} = \frac{U_{hd}}{\omega_{h}(L_{d}L_{q} - L_{dq}^{2})} [L_{\Sigma} - L_{\Delta}\cos(2\Delta\vartheta) - L_{dq}\sin(2\Delta\vartheta)]\sin(\omega_{h}t)$$

$$i_{hq}^{x} = -\frac{U_{hd}}{\omega_{h}(L_{d}L_{q} - L_{dq}^{2})} [L_{\Delta}\sin(2\Delta\vartheta) + L_{dq}\cos(2\Delta\vartheta)]\sin(\omega_{h}t)$$

The *q* current amplitude I_{hq} contains different position information.

HF Voltage Injection

HF Voltage Injection

Convergence range extension The convergence points are the solutions of $I_{hq} = 0$:

$$-rac{U_{hd}}{\omega_h(L_dL_q-L_{dq}^2)}[L_\Delta\sin(2\Deltaartheta)+L_{dq}\cos(2\Deltaartheta)]=0$$

The estimated position is affected by an error.

HF Voltage Injection

Convergence range extension

$$[L_{\Delta}\sin(2\Delta\vartheta) + L_{dq}\cos(2\Delta\vartheta)] = 0 \rightarrow tan(2\Delta\vartheta) = -\frac{L_{dq}}{L_{\Delta}}$$

The estimation error is

$$\varepsilon = \frac{1}{2} tan^{-1} (-\frac{L_{dq}}{L_{\Delta}})$$

HF Voltage Injection

Introduction

HF Voltage Injection

Convergence range extension

Convergence map in the I_d - I_q plane

The estimation converges with an **error** so the **actual** machine **working point** is **different from the reference**,

i.e. the machine does not work in MTPA.

Real machine: high frequency model

No simplifying assumptions:

- With iron saturation
- With cross-coupling

The flux/current relationship is

$$\begin{bmatrix} \lambda_d \\ \lambda_q \end{bmatrix} = \begin{bmatrix} \lambda_d(i_d, i_q) \\ \lambda_q(i_d, i_q) \end{bmatrix}$$

Introduction

HF Voltage Injection

Convergence range extension The currents of a sensorless drive with high frequency injection are made of two terms

$$i_d = I_d + i_{hd}$$

 $i_q = I_q + i_{hq}$

- $(I_d, I_q) \rightarrow$ working point given by the speed and current control
- $(i_{hd}, i_{hq}) \rightarrow$ due to the injection, for the position estimation

The flux/current relationship is linearised around the working point (I_d, I_q)

Introduction

HF Voltage Injection

Convergence range extension If only the **high frequency flux** is considered and the **differential inductances** ℓ_d , ℓ_q , ℓ_{dq} are defined, the following **high frequency flux/current model** can be written as

$$\begin{bmatrix} \lambda_{hd} \\ \lambda_{hq} \end{bmatrix} = \underbrace{\begin{bmatrix} \ell_d(I_d, I_q) & \ell_{dq}(I_d, I_q) \\ \ell_{dq}(I_d, I_q) & \ell_q(I_d, I_q) \end{bmatrix}}_{\ell} \begin{bmatrix} i_{hd} \\ i_{hq} \end{bmatrix}$$

EDLab Padova

Real case: current response

Similarly to the previous cases the **high frequency currents** due to the **pulsating flux vector** can be calculated

$$i_{hd}^{x} = \frac{U_{hd}[\ell_{\Sigma}(I_{d}, I_{q}) - \ell_{\Delta}(I_{d}, I_{q})\cos(2\Delta\vartheta) - \ell_{dq}(I_{d}, I_{q})\sin(2\Delta\vartheta)]}{\omega_{h}[\ell_{d}(I_{d}, I_{q})\ell_{q}(I_{d}, I_{q}) - \ell_{dq}^{2}(I_{d}, I_{q})]} \sin(\omega_{h}t)$$

$$i_{hq}^{x} = \underbrace{-\frac{U_{hd}[\ell_{\Delta}(I_{d}, I_{q})\sin(2\Delta\vartheta) + \ell_{dq}(I_{d}, I_{q})\cos(2\Delta\vartheta)]}{\omega_{h}[\ell_{d}(I_{d}, I_{q})\ell_{q}(I_{d}, I_{q}) - \ell_{dq}^{2}(I_{d}, I_{q})]}}_{I_{hq}} \sin(\omega_{h}t)$$

Introduction

HF Voltage Injection

with
$$\ell_{\Sigma}(I_d, I_q) = \frac{(\ell_d(I_d, I_q) + \ell_q(I_d, I_q))}{2}$$
 and $\ell_{\Delta}(I_d, I_q) = \frac{(\ell_q(I_d, I_q) - \ell_d(I_d, I_q))}{2}$

HF Voltage Injection

The **dependence on** the reference **current angle** can be **neglected** since it is assumed equal to the MTPA angle ϑ_{MTPA} .

$$\ell_d = f(|I^*|, \Delta \vartheta) \qquad \qquad \ell_d = \ell_d(|I^*|, \Delta \vartheta) \qquad \ell_q = \ell_q(|I^*|, \Delta \vartheta) \\ \ell_q = g(|I^*|, \Delta \vartheta) \qquad \Rightarrow \qquad \ell_{dq} = \ell_{dq}(|I^*|, \Delta \vartheta) \qquad \ell_{\Delta} = \ell_{\Delta}(|I^*|, \Delta \vartheta)$$

Like the working point, also the **inductances vary according to** the **estimation error** $\Delta \vartheta$ and the **required current** vector $\overline{I^*}$.

HF Voltage Injection

HF Voltage Injection

HF Voltage Injection

Convergence range extension

The *q* current amplitude I_{hq} can be written as a function of $\Delta \vartheta$ and $|I^*|$

$$I_{hq}(|I^*|, \Delta \vartheta) = -\frac{U_{hd}[\ell_{\Delta}(|I^*|, \Delta \vartheta) \sin(2\Delta \vartheta) + \ell_{dq}(|I^*|, \Delta \vartheta) \cos(2\Delta \vartheta)]}{\omega_h[\ell_d(|I^*|, \Delta \vartheta)\ell_q(|I^*|, \Delta \vartheta) - \ell_{dq}^2(|I^*|, \Delta \vartheta)]}$$

HF Voltage Injection

Convergence range extension

The convergence points are the solutions of $I_{hq} = 0$: $U_{hd}[\ell_{\Delta}(|I^*|, \Delta \vartheta) \sin(2\Delta \vartheta) + \ell_{da}(|I^*|, \Delta \vartheta) \cos(2\Delta \vartheta)]$

$$\frac{\partial h_d[\partial \Delta(|I^*|, \Delta \vartheta) \sin(2\Delta \vartheta) + \partial d_q(|I^*|, \Delta \vartheta) \cos(2\Delta \vartheta)]}{\omega_h[\ell_d(|I^*|, \Delta \vartheta) \ell_q(|I^*|, \Delta \vartheta) - \ell_{dq}^2(|I^*|, \Delta \vartheta)]} = 0$$

At the nominal current I_{hq} does not cross zero.

HF Voltage Injection

Convergence range extension The observer nullifies I_{hq} so the algorithm converges to the solution of

$$\left[\ell_{\Delta}(|I^*|, \Delta\vartheta)\sin(2\Delta\vartheta) + \ell_{dq}(|I^*|, \Delta\vartheta)\cos(2\Delta\vartheta)\right] = 0$$
$$\ell_{dq}(|I^*|, \Delta\vartheta)$$

$$ightarrow ext{tan}(2\Deltaartheta) = -rac{\ell_{dq}(|I^*|,\Deltaartheta)}{\ell_{\Delta}(|I^*|,\Deltaartheta)}$$

At the **nominal current no solutions** can be found.

HF Voltage Injection

Convergence map in the I_d - I_q plane 0.5 1 $I_{\rm q}$ [p.u.] 0 0.5 -0.5 -1 0 0.5 -0.5 0 1 -1 I_d [p.u.]

Introduction

HF Voltage Injection

Convergence range extension

At the nominal current the estimation does not converge.

Convergence range extension

Convergence range extension

Introduction

HF Voltage Injection

Dadova

Compensations

Two types of compensation can be incorporated for

- achieving convergence at any current
- increasing robustness
- increasing accuracy

Introduction

HF Voltage Injection

Convergence range extension The possible compensations are:

- angle compensation
- current compensation

EDLab Padova

The angle compensation consists in adding an angle $\alpha = -\varepsilon(\bar{I^*})$ to compensate the estimation error.

Angle compensation

Introduction

HF Voltage Injection

HF Voltage Injection

Convergence range extension

Convergence map in the I_d - I_q plane

The stable **convergence points coincide with** the desired one (i.e. **MTPA** points) so the estimation error has been compensated.

Padova

Introduction

HF Voltage Injection

Convergence range extension

However the convergence at the nominal current is only barely stable because there is a low margin between the stable and unstable convergence points.

dova

Current compensation

The current compensation consists in **shifting** the I_{hq} waveform by adding I_{comp} in order to have $I_{hq}^{in} = 0$ in correspondence of $\Delta \vartheta = 0$.

HF Voltage

HF Voltage Injection

Convergence range extension

Convergence map in the I_d - I_q plane

The stable **convergence points coincide with** the desired one (i.e. **MTPA** points) so the estimation error has been compensated.

Padova

Injection

Convergence range extension

Stable convergence points exist at the nominal current. There is a higher margin between the stable and unstable convergence points.

EDLab Padova

Both compensations

The two compensations can be combined and used together.

HF Voltage

HF Voltage Injection

Convergence range extension

The stable **convergence points coincide with** the desired one (i.e. **MTPA** points) so the estimation error has been compensated.

Dadova

Introduction

Convergence range extension

With two compensation parameters the convergence interval can be maximised.

All the described compensations need the **knowledge of the inductances maps** of the machine. Convergence range extension

Introduction

HF Voltage Injection

Convergence range extension

Thank you for your attention