Esercizio 1. Sia V uno spazio vettoriale di dimensione 6 e siano U_1 , U_2 sottospazi di V, con dim $U_1 = 5$ e dim $U_2 = 2$. Dimostrare che dim $(U_1 \cap U_2) \ge 1$. Deve necessariamente essere dim $(U_1 \cap U_2) = 1$?

Esercizio 2. È possibile che esista una funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che Ker(f) = Im(f)? Perché? E se fosse $f: \mathbb{R}^4 \to \mathbb{R}^4$, tale che Ker(f) = Im(f)?

Esercizio 3 Sia $f(z) = z^2 + \bar{z}|z|$. Risolvere l'equazione

$$zf(z) = |z|^3 - 8i,$$

esprimendo le soluzioni in forma algebrica e disegnandole nel piano di Gauss.

Esercizio 4. Nello spazio vettoriale \mathbb{R}^4 sia Vil sottospazio generato dai vettori $v_1 = (0, 3, -1, 2), v_2 = (1, 2, -2, 0)$ e $v_3 = (2, 1, t, -2)$.

- (a) Determinare la dimensione di V, al variare di $t \in \mathbb{R}$.
- (b) Sia U il sottospazio di \mathbb{R}^4 di equazione $x_1 + x_2 + 2x_4 = 0$. Si scriva una base di U.
- (c) Sia $W \subset U$ il sottospazio generato dai vettori $w_1 = (1, 1, 0, -1), w_2 = (-2, 0, 1, 1)$. Si trovi una base di un sottospazio $U' \subset \mathbb{R}^4$ tale che $U = W \oplus U'$.

Esercizio 5. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare data da

$$f(x, y, z) = (x + 2y + tz, 2x + 4y - 4z, -x + ty + 2z)$$

- (a) Scrivere la matrice di f rispetto alle basi canoniche e determinare il rango di f, al variare di $t \in \mathbb{R}$.
- (b) Per il valore di t per cui il rango di f non è massimo, trovare una base di Ker(f) e una base di Im(f).
- (c) Per il valore di t trovato nel punto (b), determinare una base $\{v_1, v_2, v_3\}$ del dominio e una base $\{w_1, w_2, w_3\}$ del codominio tali che la matrice di f rispetto a tali basi sia $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Esercizio 6. Si consideri la matrice

$$A_{(t)} = \begin{pmatrix} 1 & 0 & t \\ 0 & 3 & 0 \\ -2 & 0 & -1 \end{pmatrix}$$

- (a) Si scriva il polinomio caratteristico di $A_{(t)}$ e si determini per quali valori di t gli autovalori di $A_{(t)}$ sono reali.
- (b) Si determini per quali valori di t la matrice ha autovalori con molteplicità maggiore di 1. Per ciascuno dei valori di t così trovati si dica se la matrice corrispondente è diagonalizzabile.
- (c) Si dica se è possibile trovare una base ortonormale di \mathbb{R}^3 costituita da autovettori della matrice che si ottiene per t=-3.

Esercizio 7. Nello spazio affine euclideo tridimensionale consideriamo il piano π di equazione 2x - 3y + z + 4 = 0 e i punti A = (-2, 0, 0) e B = (0, 0, -4).

- (a) Determinare le equazioni parametriche della retta s passante per il punto B, contenuta nel piano π e ortogonale alla retta passante per A e B.
- (b) Dato il punto P = (1, 4, -2) determinare il punto sul piano π di minima distanza da P.