
ETEP Vol. 11, No. 3, May/June 2001 181

ETEP

1 Introduction

The numerical solution of the power flow problem
is one of the most widely investigated topics in power
system analysis and hundreds of contributions can be
found in the literature. As well known, the first numeri-
cal approaches for power flow computation were based
on Y-matrix and Z-matrix iterative methods [1], the main
disadvantages being scarce reliability for the former and
high storage requirement and relatively low speed for the
latter. Subsequently, the Newton-Raphson method [2]
and different techniques derived [3] (made competitive
with the application of sparsity programming and opti-
mal-ordering triangular factorization) have shown bet-
ter properties than the previous techniques and have now
practically replaced any other existing method for power
flow computation in industrial applications. There are
other approaches, including the solution of the power
flow problem in complex form applied to the Newton-
Raphson method [4]. Overviews of the various methods
may be found in review papers and even standard text-
books (see for instance [5], [6]). In this framework it
seems hard to propose anything new different from
variations or improvements of the existing Newton
methods and derivations. Nevertheless, in this work the
authors have reconsidered the admittance matrix ap-
proach and have developed a novel complex matrix iter-
ative procedure particularly simple for programming
and which have shown to have excellent convergence
properties. The distinctive performance of this method
is the high accuracy of the solutions. It is possible to
achieve convergence, within reasonable times, with
largest absolute active and reactive power-mismatch
equal to 10–14 MW/Mvar. The power flow solution is
achieved also in those systems with high r/x ratio in some
lines and in situations close to voltage collapse. More-
over the procedure can be easily implemented in any
commercially available math packages (in this work
“Matlab” has been used). Test results and some details
of the method’s performance on up to 450-bus networks
are presented.

2 Underlying Concepts

It is known that networks with shunt admittances
which are small with respect to branch admittances are
likely to be ill-conditioned, and the conditioning tends
to improve with the size of the shunt admittances (i.e.
with the electrical connections between busbars and ref-
erence node) [6]. In the Z-matrix algorithm proposed by
Brown et al. [1], fixed load impedances to ground were
incorporated into the impedance matrix showing that
this was “helpful in achieving rapid overall system con-
vergence”. In [7], which deals with Y and Z matrix meth-
ods, it is shown that the form of the network defining
equations has a pronounced effect on the number of the
iterations required for convergence, an hybrid form of
the “transfer-ratio method” being the most convenient.
The present method rationally combines and integrates
the “good ideas” of the foregoing papers adding some
completely new aspects. The method is based on the for-
mal possibility to represent both loads and generators
(except the slack-bus) by shunt elements which are in-
cluded in a nodal admittance matrix. The main novelty,
which will be demonstrated to be the key-factor for dras-
tically reducing the number of iterations required for
convergence with respect to the classic Y-matrix meth-
ods, is to represent the generators as shunt elements too.
The voltage and power constraints are also catered for
by these shunt admittances. The system may be thus
thought as an “inert” system which is “excited” by the
voltage phasor applied to the slack bus; the resulting
nodal voltages determine absorbed (at load nodes) and
injected (at generation nodes) complex powers depend-
ing upon the shunt admittances. A matrix iteration algo-
rithm is then applied for adjusting the value of the shunt
admittances in order to match voltage and power con-
strains. Alternatively, the adjustment is achieved by in-
jecting in parallel with the shunt admittances suitable
correction currents with no modification of the initial ad-
mittance values. In both methods the system is always
solved in complex form. Conversion of generators and
loads into shunt admittances makes the system matrix
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well conditioned and avoids numerical difficulties and
singularity because of the presence of as many strong
ties to ground as the number of load and generator buses.

3 Basic Procedure

A balanced and symmetrical three-phase power sys-
tem is assumed so that the transmission system is repre-
sented only by its positive-phase-sequence network.

The steady-state regime of the system (see Fig. 1) is
specified by the following scheduled power and voltage
values at the network buses in per unit;

(1)

Fig. 1. Schematic representation of power system (G: gener-
ation nodes, L: load nodes)

The power system of Fig. 1 can be formally splitted,
as shown in Fig. 2, into the passive network N (inter-
connection and distribution network) and the set of shunt
branches Sh, representing the generators G and loads L,
considering the slack generator external, i.e. iaSh∫0.

In accordance with the symbols shown in Fig. 2, the
matrix equation for the passive block N is given by

iN = YN u (2)

where:

(3)

(4)

and YN is the (nG + nL) ¥  (nG + nL) passive network nodal
admittance matrix.

Fig. 2. Splitting of power system into passive network (N)
and shunt branches (Sh)

For the  Sh block  the following matrix equation
holds:

iSh = YSh u (5)

where:

and YSh is the (nG + nL) ¥  (nG + nL) square diagonal ma-
trix (see Fig. 3), whose admittance elements are defined
below.

Fig. 3. Partitioned generator-load square diagonal matrix

Defining Sm = pm + jqm as the complex power (finite
or null) absorbed into the generic load bus  m  when the
voltage um is applied, it results

(6)

In a similar manner Sg = pg + jqg is the complex power
injected at the generic generator g bus with nodal volt-

ETEP Vol. 11, No. 3, May/June 2001182

ETEP

u

u u

p p

p jq p jq

a,r

b,r g,r

h,r h,r m,r m,r

:  voltage magnitude 
of generator buses 
b g;

:  slack bus reference 
voltage phasor:

:  active power 
injected at 
generator buses 
b g;

complex power 
(finite or null) 
absorbed by load 
buses h m.

b,r g,r

º

º

º

º

+ º +

º

¸

˝

Ô
Ô
Ô
Ô
Ô
Ô
Ô
Ô
ÔÔ

˛

Ô
Ô
Ô
Ô
Ô
Ô
Ô
Ô
Ô
Ô

:

Passive network (N)

a

ua,r

b g

ug um

h m

G

Slack

L

N

a b g h m

ShSlack

iaN ibN

um

igN imN

ub

ia

ibSh igSh imSh

ua,r iaSh ∫ 0

0

yb

yg

yh

ym

YSh =

YL

YG

S u i i
S

u
y u y

p jq

u
m m mSh

m

m
m m m

m m

m

= = = =*
*

*; ;
–

.mSh 2i .... .... .... ....N = i i i i i
t

aN bN gN hN mN

u .... .... .... ....= u u u u u
t

a,r b g h m

i ....Sh = 0 bSh gSh hSh mShi i i i
t

.... .... ....



age ug; consequently the generator also may be formal-
ly represented in steady-state regime by its “own admit-
tance” with applied voltage ug, i.e.

(7)

Given that iaSh ∫  0, it follows:

(8)

As mentioned above, the basic concept which un-
derlines the method is the following: the Sh block, com-
posed by the above mentioned “inert” linear bipoles, is
subject to both absorption and injection of complex
power when, in steady-state regime, is “excited” by the
application of the voltage phasor ua,r applied to node  a
of the N transmission and distribution (passive) network.
Hence, having determined YN, through the usual topo-
logical procedures, and fixed YSh (with the criteria de-
scribed in the following), eq. (2) may be combined with
eq. (5) to give 

i = Y u (9)

where Y=YN +YSh and is the 
column vector of currents injected at  a . . . m  system
buses shown in Fig. 2. 

Fig. 4. Partitioned form of i=Y u

By introducing the partition shown in Fig. 4, it fol-
lows:

iG = YGG uG + YGL uL (10)

0 = YLG uG + YLL uL . (11)

Applying the standard matrix procedure for variable
elimination, eq. (11) can be rewritten as

(12)

substituting uL in eq. (10) yields:

(13)

where the square matrix YLL is generally nonsingular. 

y
g

Eq. (13) may be further partitioned as Fig. 5 clearly
shows:

Fig. 5. Partitioned form of iG = YGeq uG

where YGeq completely characterizes the behavior of the
system as seen at generation buses, having already syn-
thesized the interactions between network, generators
and loads.

Since ix ∫ 0 it follows that:

0 = C ua,r + D ux ; (14)

hence the column vector ux (phasor voltages at the buses
b…g) is given by

ux = – D–1C ua,r (15)

where the square matrix D is generally nonsingular.
Therefore, known the column vector uG, the column

vector uL is given by eq. (12) and the slack-bus current
ia is:

ia = A ua,r + B ux .

The steady-state regime due to the “excitation” of  a
with voltage ua,r, once fixed the matrix YSh, is thus com-
pletely defined.

4 Iteration Algorithm

To begin the iterative procedure, the complex shunt
admittances are initially set equal to the following values: 
– the equivalent (nominal) load admittances with ini-

tial |uh0|…|um0| = 1 p.u. are computed as:

(16)

– the equivalent generator initial admittances are esti-
mated on the basis of scheduled active power and
load and network reactive power approximated de-
mand qb1 ∏ qg1 (see Appendix I) as:

(17)
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in accordance to eq. (8)

(18)

The initial matrix YSh1 (composed of the admit-
tances eqs. (18), (17) and (16) as in Fig. 3) contributes
with YN in determining, according to Fig. 4 and Fig. 5,
an equivalent matrix YGeq1, (partitioned into the four sub-
matrices A1, B1, C1, D1). Hence, in accordance with eq.
(15), the first estimate of column vector ux1 of voltage
phasors ub1… ug1 is given by:

ux1= – D1
–1 C1 ua,r ; (19)

being now uG1 completely determined, it is possible to
calculate the first estimate of  uL1 in accordance with
(12)

uL1 = – Y –1
LL1 YLG uG1 . (20)

The elements of vector ux1 are complex voltages
ub1 =ub1 ejdb1 …ug1 =ug1 ejdg1 whose magnitudes will be
generally different from the scheduled values
|ub,r| … |ug,r| and, similarly, the elements of vector uL1 are
complex voltages uh1 …um1 whose magnitudes will be
different from 1 p.u. initially assumed in eq. (16), re-
sulting in active and reactive absorbed powers general-
ly different from the scheduled values. The power flow
problem is then solved by applying an iteration method
which modulates the shunt admittances of both genera-
tor and load busses in order to satisfy all the scheduled
voltage and power values (in the following named ad-
mittance matrix correction method, AMC). The AMC
method has demonstrated to have excellent convergence
properties (see Section 5 below); it requires, however,
inversion of updated admittance matrices each iteration,
which is a major drawback when solving large systems.
This drawback has been elegantly overcame by the here
named fringing current correction (FCC) method, de-
scribed later, which conceptually applies the same kind
of corrections as the AMC method (thus maintaining the
same convergence properties) without the need of
inverting the admittance matrices. The basic principles
of the iterative procedure can be better understood by
describing first the type of corrections performed in the
AMC method, where the shunt admittances are actually
updated; the FCC method achieves the same result by
injecting a suitable set of correcting currents (maintain-
ing the shunt admittances equal to their initial values).
Both methods treat differently the generator and load
busses.

4.1 AMC method

4.1.1 Generator admittance correction (updating
YG)

This correction consists of updating generator sus-
ceptances, initially calculated from eq. (17), considering
that reactive power variations generally affect bus volt-
age magnitudes but negligibly phase angles. Given the
first estimate of ux1 in accordance with eq. (19), in order
to obtain a column vector ux1,c (through a simple trans-

formation Tx) having unmodified phase angle db1 … dg1

but the scheduled voltage magnitudes |ub,r| … |ug,r|, a cur-
rent vector Dix1,c given by 

Dix1,c = C1 ua,r + D1 ux1,c (21)

should be injected at the generation buses b∏g. It in-
volves the injection of incremental powers Dpx1,c + jDqx1,c
(see Fig. 6).

Fig. 6. Correction of generators b∏g

By considering the prevalent link between reactive
powers and voltage magnitudes (and observing that eq.
(17) clearly indicates each generator injects its own
scheduled active power), the vector jD qx1,c (see Appen-
dix II) is applied for updating, according with eq. (17),
the generator admittances

(22)

holding Thus the new matrix YG2 (diagonal) can 
⁄

be constructed. It should be noted that the generator sus-
ceptance correction is substantially related to the sensi-
tiveness (expressed by eq. (21)) of the passive system
(including loads) around the considered regime seen by
generators.

4.1.2 Load admittance correction (updating YL)

The imposition of ux1,c determines completely the
vector uG1,c as in (23)

(23)

which allows to calculate, through (20), the following
load voltage vector:

(24)

y
a
∫ 0 .
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The elements uh1,c …um1,c composing the vector
uL1,c give the possibility to update the load admittances

(25)

thus an updated matrix YL2 (diagonal) is computed. The
iterative cycle must be completed with the calculation of
Y –1

LL2 and the new matrix YGeq2 =[YGG2 –YGL Y –1
LL2 YLG]

(it permits A2, B2, C2, D2 to be computed) required to
begin the next iterative cycle. A clearer representation of
the AMC iteration procedure is given in the flow-chart
of Fig. 7.

Fig. 7. Flow-chart of AMC

4.2 FCC method

The possibility of avoiding the updating of YG, YL
and the inversions of YLL and D in the iterative cycle is
based on assuming for the system a constant model equal
to that of the starting procedure of AMC (characterized
by YN, YG1, YL1, A1, B1, C1, D1) and considering the suit-
able correction current vectors Dixq,c (at generator buses)
and DiL,c (at load buses). To reach convergence the fol-
lowing formulas (see App. II∏IV) are applied sequen-
tially as depicted in the flow-chart of Fig. 8. 

(A8)

(A5)

(A9)

(A7)

(A2)

The beginning of first cycle (k=1), regarding with
the calculation of vector DiL (load correction currents),
needs to impose Dix∫ 0 and DiL∫0, thus giving same ux1
(as in eq. (19)) ux1,c , uG1,c (as in eq. (23)), uL1,c (as in eq.
(24)); from load voltage vector uL1,c the correction cur-
rents DiL2,c can be computed, so that, as Appendix IV
shows, the scheduled complex power is absorbed in each
load bus.

As concerns the b ∏g generator corrections, eq. (A7)
gives Dix2,c (conditioned from ux1,c and from load updat-
ing DiL2,c) and then the quadrature component current
vector Dixq2,c must be extracted through eq. (A2). The so
calculated vectors DiL2,c and Dixq2,c will be injected in the
second cycle. The procedure is iterated until conver-
gence. Since the meaning of fringing current correction
is absolutely equivalent to the above of admittance cor-
rection (but without modifying the system model i.e.
constant admittances and A1, B1, C1, D1 unchanged), the
power flow solution is achieved with exactly the same
number of iteration but the time per iteration is drasti-
cally reduced proportionally with the size of YLL. In each
iteration until convergence, slack, load and generator
complex powers are calculated with eqs. (A12), (A10),
(A11) respectively (see App. V). 

Fig. 8. Flow-chart of FCC

5 Convergence Performance using a 500
MHz Pentium (128 MB RAM)

The procedure has been tested on a number of case
systems and compared with different commercial pack-
ages based on the Newton-Raphson method. Particular
attention has been given to ill-conditioned cases, where
the procedure has shown to have better convergence
properties than other methods. It is known that the main
drawback of the classic Y-matrix and Z-matrix methods
is the rather slow convergence (i.e. high number of iter-
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ations), whereas the Newton-Raphson and derived
methods usually achieve convergence within very few it-
erations. Similarly to the latter, the present procedure
can reach convergence with very few iterations, when
applying either the AMC or the FCC correction method,
and with a cpu-time comparable or even less then that of
Newton-Raphson methods when the much faster FCC
method is applied. Such a good convergence perfor-
mance derives from having converted the generators, as
well as the loads, into shunt admittances included in the
Y-matrix: increasing the number of shunt elements
makes the system matrix better conditioned and de-
creases the risk of numerical difficulties and singulari-
ties. This is well demonstrated in Tab. 1 below that re-
ports the number of iterations and cpu-times required for
a 42-bus system as a function of the percentage of gen-
erator power represented as fixed shunt admittances in-
cluded in the Y-matrix, the remaining portion being
catered for by fringing currents (loads are fully repre-
sented as shunt admittances). If only load admittances
are included in the Y-matrix (first column in Tab. 1),
convergence is reached very slowly. It must be empha-
sized that this is the case adopted in classical impedance
matrix old methods [1]. It results clearly that the execu-
tion times drastically reduce increasing the percentage
of generator admittances considered and become partic-
ularly small with the total inclusion of load and genera-
tors admittances.

% gen. adm. 0 20 40 60 80 100

no. of iterat. 38 29 21 12 7 3
cpu-times [s] 0,203 0,155 0,112 0,064 0,037 0,016

Tab. 1. Number of iterations and cpu times for a 42-bus sys-
tem within  10–3 MW/Mvar maximum bus mismatches

It is well known that a good first estimate is of im-
portance for achieving the convergence: in this approach
it has been observed that a good first estimate of the gen-
erator susceptance may be realised with a simplified pro-
cedure for assessing the generator reactive power de-
scribed in App. I. The benefits of such estimate are
shown in Tab. 2, reporting the number of iterations (con-
sequently the cpu-times) required for convergence on a
number of test networks, in case of assuming an initial
estimate of generated reactive power equal to zero or
evaluated as in App. I.

System Number of iterations Number of iterations 
with qb∏qg=0 with qb∏qg estimated as 

in App. I

18-bus 5 3
21-bus 4 2
42-bus 5 3
60-bus NO CONVERGENCE 4
105-bus 7 4
150-bus 7 5
252-bus NO CONVERGENCE 3
450-bus 12 5

Tab. 2. Number of iterations with different initial qb ∏ qg

within 10–3 MW/Mvar maximum bus mismatches

System Total cpu-time [s] Total cpu-time [s]
with AMC with FCC

18-bus 0,047 0,003
21-bus 0,047 0,003
42-bus 0,047 0,003
60-bus 0,156 0,011
105-bus 0,25 0,017
150-bus 0,89 0,047
252-bus 1,25 0,063
450-bus 13,24 0,89

Tab. 3. Total cpu-times with two different methods within
10–3 MW/Mvar maximum bus mismatches 

The execution times (most of all with FCC) obtained
in the study of up to 450-bus network seems to be very
encouraging and comparable with other power flow
methods. An attempt of graphical extrapolation would
indicate for the FCC a cpu time of about 3∏4 s to solve
a 1000-bus network. As mentioned in the introduction,
the method has shown to be capable of achieving an ex-
tremely high degree of accuracy (up to 10–14 MW/Mvar
maximum bus mismatches) yielding the solution with
cpu-times not much higher than those reported in Tab. 3.
Moreover it should be noted that the proposed method
can achieve convergence also in those systems with high
r/x ratio in some lines and in the situations close to volt-
age collapse, where the Newton-Raphson methods may
have numerical instabilities. 

6 Conclusions

The present work demonstrates that the major draw-
backs of the classical admittance matrix approach,
namely poor convergence properties, can be efficiently
overcome by considering both loads and generators as
shunt admittances to be included into the admittance ma-
trix. The basic procedure is straightforward and, coupled
with the appropriate criteria, has shown to have excel-
lent convergence performance. In addition, the simplic-
ity of the approach and the conciseness of the matrix al-
gebra applied, allows to rapidly implement the proce-
dure on any commercially available math-packages such
as “Mathematica” or “Matlab”. The presented method
allows to calculate the power flow regime either in very
large multiarea network without using the typical di-
akoptic formulas or in unbalanced three-phase power
systems showing not negligible negative and zero com-
ponents.

7 List of Symbols and Abbreviations

7.1 Symbols

u complex voltage
|u| voltage magnitude
ua,r scheduled slack bus voltage phasor
i complex nodal current 
y complex admittance
Y complex admittance matrix
S complex power
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p active power
q reactive power
Di, Dp,Dq incremental correction vectors 
db … dg phase angles of generator bus voltages

b÷g
∏ from … to …
∫ is identically equal to
ƒ element-by-element array multiplication
/ element-by-element array division
diag(X) main diagonal vector of X
Tx transformation matrix
nG number of generator buses
nL number of load buses
Im imaginary part of a complex quantity 

7.2 Subscripts 

r scheduled value
c corrected value
G generator buses a∏g
L load buses h∏m
a slack-bus
x generator buses  b∏g
N passive network
Sh shunt branches 
1,2, … k first, second, …, k-th iteration
0 initial estimate 
q quadrature component 

7.3 Superscripts

t transposition
* complex conjugate
–1 matrix inversion

7.4 Abbreviations 

AMC Admittance Matrix Correction
FCC Fringing Current Correction

Appendix I

An efficient method for evaluating approximately
the initial reactive power qb1∏qg1 of generators (useful
in eq. (17) to first estimate generator admittances) is
briefly presented. The network is thought as ideal or
without losses so that YN has only its imaginary part. The
generators are not incorporated in YSh whereas the loads
are represented with their nominal conductance and sus-
ceptance as in eq. (16). The generator voltage phasors
(including slack bus) are assumed as laying on the real
axis and of magnitude equal to scheduled values. Eq.
(13) gives the generators currents iG, and hence the de-
sired reactive power first estimate. 

Appendix II

Denoting with ƒ element by element array multi-
plication the reactive power vector is given:

(A1)

The vector Dixq1,c (quadrature component current
vector) that springs out of the same injection of reactive
power, must also satisfy

that yields obviously, 

(A2)

where / is element by element array division. 

Appendix III

Generalizing eqs. (10) and (11) yields:

iG=YGG1 uG + YGL uL (A3)

DiL=YLG uG + YLL1 uL . (A4)

Solving eq. (A4) for uL and substituting it in eq. (A3)
yields:

(A5)

(A6)

Eq. (A6) can be partitioned as follows: 

It can be derived in particular that:

(A7)

Eq. (7A) can be solved for ux as follows:

(A8)

It should be noted that YLG and YGL only depend
upon N network.

Appendix IV

By observing Fig. A1, application of the scheduled
complex power Sm,r yields 
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The foregoing equation can be written as (see eq.
(16)):

hence

By using vector operations (i.e. element by element
array division and multiplication) it may be rewritten in
vectorial form as in (A9).

(A9)

where 1 is an identity column vector and diag(YL) is the
main diagonal vector of YL.

Fig. A1. Typical m load bus characterized by nominal admit-
tancey and scheduled Sm,r

Appendix V

By observing Fig. A2, in each iteration until con-
vergence, the generator complex power is computed by

(A10)

whereas the load complex power is given by

(A11)

Finally, the slack-bus complex power is:

(A12)

Fig A2. Complex powers in generator and load busses
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