Si supponga di avere una linea elettrica aerea in territorio brasiliano (f=60 Hz) con tensione nominale pari a 500 kV (tensione ad impulso pari a 1550 kV, corrente capacitiva massima interrompibile pari a 500 A) e lunghezza pari a 321 km. L'altezza media da terra è di 30 m. La linea è quadrinata con distanza tra i sub-conduttori pari a 1,1 m. Il diametro della corda è pari a 29,58 mm. Considerando che i parametri chilometrici sono:

r= 0,01675 Ω /km; ℓ = 0,7378 mH/km; c=15,2193 nF/km; g=0 nS/km. $I_{amnacitv}$ =1 500 A

Si chiede di calcolare:

- a) La costante di propagazione, l'impedenza caratteristica e la potenza naturale riferita a $U_N=500$ kV; (3 punti)
- b) La matrice di trasmissione; (3 punti)
- c) La caduta di tensione percentuale, le perdite elettriche attive e la differenza tra la potenza reattiva alla partenza e quella all'arrivo mediante il teorema di Ossanna alimentando la linea con tensione stellata pari a 290 kV e con potenza complessa all'arrivo pari a 1 300 MW+j 0 Mvar. È un regime accettabile?; (6 punti)
- d) La tensione subtransitoria nel caso di energizzazione della linea a vuoto considerando la tensione stellata di 290 kV e la corrente di corto circuito subtransitoria della rete di alimentazione pari a 23 kA. Una volta ripristinata la tensione nominale stellata in partenza della linea $(U_{oN}=290 \text{ kV})$ quanto vale la corrente alla partenza? È interrompibile da un interruttore standard? (4 punti)

Si chiede inoltre di calcolare:

- e) L'impedenza d'onda di un conduttore della linea (2 punti)
- f) La probabilità che si abbia una scarica nel caso di fulminazione diretta sul conduttore di fase (4 punti);
- g) La probabilità che si abbia una scarica nel caso di fulminazione diretta sul traliccio senza considerare la presenza della fune di guardia e una resistenza di messa a terra del traliccio colpito pari a $20~\Omega(4~punti)$
- h) La probabilità che si abbia una scarica nel caso di fulminazione diretta sul traliccio considerando la presenza della fune di guardia (altezza da terra pari a 50 m e diametro pari a 28,62 mm) e una resistenza di messa a terra del traliccio colpito pari a 20 Ω e un coefficiente k=0,80 (4 punti)

Si chiede infine di calcolare:

i) Una rete elettrica interconnessa ha energia regolante complessiva dei generatori pari a 40 000 MW/Hz e energia regolante dei carichi pari al 2%. Si supponga di avere una perdita di generazione pari a 2 000 MW, di quanto varia la frequenza? (1,5 punti)

TEMPO A DISPOSIZIONE: 1 h 40'

NOME: COGNOME:

a)	
b)	
c)	
d)	
e)	
f)	
g)	
h)	
i)	

ORALE in forma SCRITTA

DOMANDE A RISPOSTA RAPIDA

Il candidato risponda in modo succinto alle seguenti domande:

- 1) Vantaggi della matrice delle ammettenze nodali rispetto a quella delle impedenze nodali. C'è un modo automatico per calcolare la matrice alle ammettenze nodali senza il ricorso al metodo per ispezione?
- 2) Il metodo in p.u. applicato alla linea elettrica ideale.
- 3) Doppio bipolo di un trasformatore trifase.
- 4) Quanto vale l'impedenza d'onda di una linea elettrica in GIL e quanto vale la sua impedenza caratteristica?

PUNTEGGIO: 3,75/30 per domanda

DOMANDA APERTA

Il candidato esponga in modo esaustivo ma sintetico intorno ai seguenti punti:

1) La regolazione della tensione: regolazione primaria e secondaria, regolazione in casi semplici, regime delle tensioni e delle potenze trasmesse in un collegamento puramente induttivo, compensatori sincroni, condensatori statici, OLTC, compensazione reattiva derivata d'area.

PUNTEGGIO: 15/30

Tempo a disposizione: 60 min

NOME: COGNOME:

	<u>k</u> = 0,00003802 + j0,0012638 [1/km]		
a)	$\underline{Z}_{\mathbb{C}}$ = 220,28 - j6,6266 [Ω]		
	$\underline{S}_{nat} = 1133.9 - j34.111 \text{ [MW+jMvar]}$		
1. \	<u>A</u> = 0,9189+ j0,0048167		
b)	$\underline{\mathrm{B}}$ = 5,0856 + j86,866 [Ω]		
	$\underline{\mathbf{C}} = 0 + j0,0017917[S]$		
	Perdite attive= 41,957 MW; ΔU= 9,23 %; Perdite reattive= 277,42 Mvar		
c)	IL REGIME è fattibile per quanto riguarda i regimi di tensione e perdite ma vi è un		
	superamento dell'ampacity		
۵۱\	Tensione subtransitoria= 323,540 - j1,7251 kV; I _{NL} = 2,0203 + j565,44 A		
d)	Non è interrompibile		
e)			
e,	$Z_0 = 299,04 \Omega$		
t/			
f)	P= 67,18 %		
g)	D 520		
81	P= 5,2 %		
h)	P= 1,84 %		
	70 - 10		
:1	$\Delta f = -0.04902 \text{ Hz}$		
i)	Δ10,0+702 HZ		