Motore sincrono a magneti permanenti

brush-less sinusoidale

prof. Luigi Alberti luigi.alberti@unipd.it

AA 2020/2021

Via del Lavoro, 7 MONTEBELLO (VI) ITALY				CE
No. 182776	Type BL	Q 104	P 19	2010
Nmax RPM	BEMF	148	V/kRPM	IP 54
Tn Nm	In	28	Arms	IC 400
Tp . 77 Nm	lp	97	Arms	2p6
Transd.	Brake	٢	lm - 24Vdc	- A
CEI EN 60034-1	Tamb. max 40° C / Ir . cl. F			

 TYP: PSM-21-20G52-410
 Nr.7060368

 U_N 330 V
 MdN
 7.00 Nm
 n_N 2000 min¹

 IdN 3.10A
 Md0
 8.40 Nm
 f_N 100 Hz

 Iso - KI. F
 IP 65
 10.2kg

The rotor configurations

SPM rotor

inset rotor

4-pole 24-slot motors.

The rotor configurations

- tangentially magnetized PMs
- radially magnetized PMs

The rotor configurations

- two flux-barriers per pole
- more flux-barriers per pole
- axially laminated rotor.

Strutture di principio motore con rotore anisotropo (IPM)

- a) SPM (isotropo)
- b) Inset PM (anisotropo)
- c) Salient pole (isotropo|anisotropo)
- d) IPM (Interior PM) (anisotropo)
- e) Spoke PM (anisotropo)
- f) IPM (anisotropo)

Posterio occur diagra:

$$\begin{bmatrix} A a x = 2a B a + M A b + M A c = (k - M) A b = 1 A b \\
A b x = M i a + 2a i b + M A c = (k - M) A b = 2 A b \\
A c = M i a + 2a i b + M A b + 2a i c = (k - M) A c = 1 A c \\
A c = M i a + M A b + 2a i c = (k - M) A c = 1 A c \\
A c = M i a + 2a i b + 2a c = (k - M) A c = 1 A c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a i b + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\
A c = A m c + 2a c \\$$