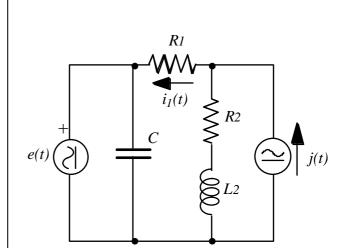
| COMPITO DI ELETTROTECNICA 21-09-2004 |          |            |            |             |         |
|--------------------------------------|----------|------------|------------|-------------|---------|
| COGNOME E NOME                       |          |            |            |             |         |
| MATRICOLA                            |          |            |            | POSTO       |         |
| CORSO DI LAUREA                      |          |            |            |             |         |
| BAGATIN□                             | CHITARIN | DESIDERI 🗆 | DUGHIERO □ | GUARNIERI □ | MASCHIO |

## ESERCIZIO DI REGIME SINUSOIDALE

## **Testo**


Della rete in regime sinusoidale di figura sono noti i valori delle resistenze, dell'induttanza e della capacità, oltre all'espressione temporale della tensione impressa:

$$e(t) = \sqrt{2} E \sin(\omega t + \pi/2),$$

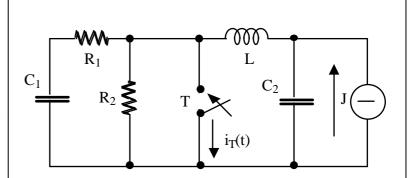
Sono inoltre note le potenze attiva  $P_E$  e reattiva  $Q_E$  erogate dal generatore ideale di tensione e(t).

Determinare:

- a) l'espressione temporale della corrente  $i_I(t)$ ;
- b) le potenze attiva  $P_J$  e reattiva  $Q_J$  erogate dal generatore ideale di corrente j(t).



| Dati                    |                               | Risultati                                                  |  |
|-------------------------|-------------------------------|------------------------------------------------------------|--|
| $R_1 = 20 \Omega$       | $R_2 = 10 \Omega$             | $i_1(t) = \sqrt{2}  8 \sin \left( 1000  t - \pi/2 \right)$ |  |
| $C = 50 \mu\text{F}$    | $L_2 = 10 \text{ mH}$         | PJ = -320 W                                                |  |
| E = 240  V              | $\omega = 1000 \text{ rad/s}$ |                                                            |  |
| $P_E = 1920 \mathrm{W}$ | $Q_E = -2880 \text{ VAR}$     | $QJ = 320 \ VAR$                                           |  |


## ESERCIZIO DI REGIME VARIABILE

Sono noti i valori di  $R_1$ ,  $R_2$ ,  $C_1$ ,  $C_2$ , L e della corrente impressa costante J.

La rete è in regime stazionario per t < 0 con l'interruttore T aperto. All'istante t = 0 l'interruttore T chiude.

Determinare l'andamento temporale per t > 0:

- della corrente  $i_T(t)$ .



Dati

$$R_1 = 80 \Omega$$

$$R_2 = 40 \Omega$$

$$C_1 = 500 \, \mu F$$

$$C_2 = 800 \, \mu F$$

$$L = 200 \,\mu H$$

$$J = 4A$$

Risultati

$$i_T(t) = 4 + 2e^{-\frac{t}{4 \cdot 10^{-2}}} + 320 \sin(2500 t)$$

## VALUTAZIONE DEL PRIMO ESERCIZIO

VALUTAZIONE DEL SECONDO ESERCIZIO

VALUTAZIONE COMPLESSIVA DEGLI ESERCIZI

VALUTAZIONE COMPLESSIVA DELLA PARTE TEORICA

VALUTAZIONE COMPLESSIVA DEL COMPITO