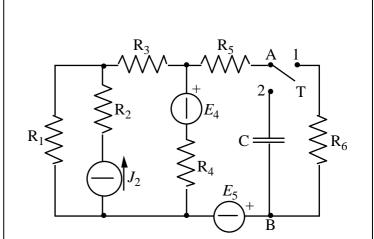
COMPITO DI ELETTROTECNICA 14-09-2005					
COGNOME E NOME					
MATRICOLA				POSTO	
CORSO DI LAU	REA (E SEDE)			•	
BAGATIN	CHITARIN	DESIDERI□	DUGHIERO □	GUARNIERI 🗆	MASCHIO


ESERCIZIO DI REGIME STAZIONARIO

Testo

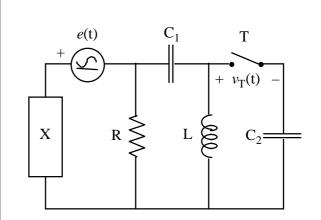
Nel circuito di figura, in regime stazionario, sono noti i valori di tutte le resistenze, tranne R_4 e della capacità C, la corrente impressa del generatore di corrente e le tensioni impresse dei generatori di tensione.

Sapendo che, con il deviatore T in posizione 1, la potenza dissipata nella resistenza R_6 è massima, determinare:

- 1. il valore della resistenza R₄
- 2. La potenza P_{E5} uscente dal generatore E_5 con T in posizione 1
- 3. L'energia W_c immagazzinata nel condensatore C con T in posizione 2

Dati		Risultati		
$R_I = 10 \Omega$	$R_2 = 30 \Omega$	$R_4 = 15 \Omega$		
$R_3 = 5 \Omega$	$R_5 = 7.5 \Omega$	$P_{E5} = -20 \text{ W}$		
$R_6 = 15 \Omega$	$C = 20 \mu F$			
$E_4 = 20 \text{ V}$	<i>E</i> ₅ = 10 V	$W_c = 36 \text{ mJ}$		
$J_2 = 12 \text{ A}$				

ESERCIZIO DI REGIME SINUSOIDALE


Testo

Della rete di figura sono noti la tensione $e(t) = \sqrt{2} E$ sen ωt impressa dal generatore ideale di tensione sinusoidale, i parametri dei bipoli passivi C_1 , C_2 e L; sono altresì noti:

- la potenza reattiva Q_E ' uscente dal generatore nel regime sinusoidale con T aperto;
- la potenza reattiva Q_E " uscente dal generatore nel regime sinusoidale con T chiuso.

Determinare:

- la reattanza X (con segno) dell'impedenza puramente immaginaria $\mathbf{Z} = j\mathbf{X}$ del bipolo di sinistra:
- il valore efficace V_T ' della tensione $v_T(t)$ con T aperto;
- il valore della resistenza R del resistore passivo;
- \bullet la potenza attiva P_E " uscente dal generatore con T chiuso.

Dati

$$C_1 = 25 \ \mu \text{F}$$
 $C_2 = 25 \ \mu \text{F}$

$$L = 160 \text{ mH}$$

$$E = 400 \text{ V}$$

$$\omega = 500 \text{ rad/s}$$

$$Q_{E}' = -1000 \text{ VAR}$$

$$Q_E'' = -640 \text{ VAR}$$

Risultati

$$X = -160 \Omega$$

$$V_{T}' = 200 \text{ V}$$

$$R = 120 \Omega$$

$$P_{E}'' = 480 \text{ W}$$

VALUTAZIONE DEL PRIMO ESERCIZIO

VALUTAZIONE DEL SECONDO ESERCIZIO

VALUTAZIONE COMPLESSIVA DEGLI ESERCIZI

VALUTAZIONE COMPLESSIVA DELLA PARTE TEORICA

VALUTAZIONE COMPLESSIVA DEL COMPITO