
COMPITO DI ELETTROTECNICA 14-07-2008							
COGNOME E N	OME						
MATRICOLA				POSTO			
CORSO DI LAUREA (E SEDE)							
DESIDERI□ DUGHI			GUARNIERI □		MASCHIO 🗆		

ESERCIZIO DI REGIME STAZIONARIO

La rete è in regime stazionario. Sono noti i valori di C, L, R_1 , R_2 , R_3 e R_7 e la corrente impressa del generatore di corrente J_7 .

Testo

Si sa che con il tasto T in posizione 1, a regime, l'energia accumulata nel condensatore C vale W_C ($V_C>0$), mentre con il tasto T in posizione 2, a regime, l'energia accumulata dall'induttore L vale W_L (con $I_L>0$). In entrambi i casi il tasto S è chiuso.

Determinare:

- 1) I parametri E_{eq} e R_{eq} del generatore equivalente di Thevenin della rete a sinistra dei morsetti AB.
- 2) Il valore della resistenza R₄.
- 3) Il valore a regime P_{J7} della potenza scambiata dal generatore J_7 , convenzionato da utilizzatore, quando il tasto T è nella posizione 3, e il tasto S è aperto.

Risultati			
$E_{eq} = 150 V$			
$R_{eq} = 15 \ \Omega$			
$R_4=22.5~\Omega$			
$P_{J7}=200~W$			

ESERCIZIO DI REGIME VARIABILE

Testo

Sono noti i parametri R_1 , R_2 , R_3 , L_1 , L_3 , C_1 e le grandezze impresse costanti J e E dei due generatori ideali. Sapendo che la rete è in regime stazionario con T_1 aperto e T_2 chiuso per t < 0 e che T_1 chiude e T_2 apre in t = 0, determinare: la tensione $V_{AB}(t)$ per

Dati

 $R_1 = 160 \Omega$

t > 0.

 $R_2 = 120 \Omega$

 $R_3 = 180 \Omega$

 $L_1 = 20 \text{ mH}$

 $L_3 = 300 \text{ mH}$

 $C_1 = 200 \, \mu F$

J = 2 A

E = 320 V

Risultati

$$V_{AB}(t) = \left(320 + 144\cos(500 t) + 20\sin(500 t) + 96 e^{-\frac{t}{0.001}}\right)V$$

VALUTAZIONE DEL PRIMO ESERCIZIO	
VALUTAZIONE DEL SECONDO ESERCIZIO	
VALUTAZIONE COMPLESSIVA DEGLI ESERCIZI	
VALUTAZIONE COMPLESSIVA DELLA PARTE TEORICA	
VALUTAZIONE COMPLESSIVA DEL COMPITO	