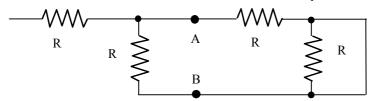
COMPITO DI ELETTROTECNICA 16-09-2008						В
COGNOME E N	OWE					
MATRICOLA				POSTO		
CORSO DI LAU	REA (E SEDE)					
DESIDERI 🗆		DUGHIERO □	GUARNI	RI	MASCHIO	

10 DOMANDE A RISPOSTA MULTIPLA

Si consiglia di leggere con attenzione la domanda e tutte le risposte prima di rispondere Rispondere a ogni domanda contrassegnando tutte le risposte giuste (possono essere più di una) Per annullare una risposta, scrivere "No" a sinistra della casella contrassegnata per errore


Domanda N. 1

Quali affermazioni sono corrette riferendosi ad un bipolo condensatore ideale:

- X l'energia immagazzinata all'istante t è pari a $C v^2 / 2$
- X in regime variabile la potenza istantanea entrante può essere negativa
- \Box con la convenzione degli utilizzatori, in regime variabile, tensione e corrente sono vincolate dalla relazione v(t) = C di / dt
- X la tensione è una variabile di stato
- nessuna delle precedenti risposte è esatta

Domanda N. 2

Nella rete di figura tutte le resistenze hanno valore $R = 30 \Omega$. La resistenza equivalente vista dalla porta AB vale:

20	Ω

12 Ω

X 15 Ω

□ 30 Ω

□ Nessuno dei precedenti valori è corretto.

Domanda N. 3

In regime sinusoidale, la reattanza capacitiva X_C di un condensatore ideale convenzionato da utilizzatore:

- □ è l'opposto del reciproco del fattore di potenza
- \Box è proporzionale alla pulsazione angolare ω
- X è inversamente proporzionale alla capacità C.
- □ è la parte immaginaria dell'ammettenza del condensatore
- nessuna delle precedenti affermazioni è corretta.

Domanda N. 4

Il teorema di Tellegen si applica a tensioni e correnti:

- solo nel caso che siano contemporaneamente presenti nei lati di una rete
- solo di una rete di bipoli normali in regime stazionario
- di una rete di bipoli ma non di n-poli
- X che verificano le LKC e LKT applicate allo stesso grafo
- nessuna delle precedenti affermazioni è corretta

Domanda N. 5

A regime sinusoidale un bipolo passivo generico di impedenza \dot{Z} (modulo Z e argomento φ), è sintetizzabile con la serie di una resistenza R_S e di una reattanza X_S che valgono:

 \square $R_S = Z \operatorname{sen} \varphi$; $X_S = Z \operatorname{cos} \varphi$

 $X R_S = Z \cos \varphi$; $X_S = Z \sin \varphi$

 \square $R_S = Z / \sin \varphi$; $X_S = Z / \cos \varphi$

 \square $R_S = Z / \cos \varphi$; $X_S = Z / \sin \varphi$

□ Nessuna delle precedenti risposte è giusta

COMPITO DI ELETTROTECNICA 16-09-2008

B

Domanda N. 6

Dato un generatore	equivalente in	regime sinus	oidale (avente	tensione impressa	E_{aa} e impedenza	equivalente $R_{\rm so}$	$+iX_{aa}$) i
valore dell'impedenz	za di carico \dot{Z}_a	che rende ma	ssima la poten	za attiva P erogata	dal generatore eq	uivalente è pari a	1:

 $X \qquad \dot{Z}_c = R_{eq} - j X_{eq}$

 $\Box \qquad \dot{Z}_c = R_{eq} + j \ 0$

 $\Box \qquad \dot{Z}_c = R_{eq} + j X_{eq}$

 $\Box \qquad \dot{Z}_c = 0 + j X_{eq}$

□ nessuna delle precedenti risposte è esatta

Domanda N. 7

Nel generatore di Norton che rappresenta una rete alla porta AB:

- X la resistenza equivalente R_{eq} è pari al rapporto tra la tensione V_{AB} a vuoto e la corrente I_{AB} di cortocircuito alla porta AB
- la potenza uscente dal generatore di corrente equivalente è uguale alla somma delle potenze uscenti dai generatori di tensione e di corrente presenti nella rete originaria
- la resistenza equivalente $R_{\rm eq}$ è pari al rapporto tra la tensione $V_{\rm AB}$ e la corrente $I_{\rm AB}$ a carico (costituito da un bipolo generico)
- \Box la corrente impressa del generatore equivalente J_{eq} è pari alla corrente I_{AB} a carico (costituito da un bipolo generico)
- nessuna delle precedenti risposte è esatta

Domanda N. 8

In regime stazionario, indicare quali dei seguenti teoremi/proprietà sono applicabili a reti non lineari:

X leggi di Kirchhoff

□ teorema di Thevenin

X conservazione delle potenze

□ sovrapposizione degli effetti

□ nessuna delle precedenti risposte è esatta

Domanda N. 9

In un grafo con ℓ lati e n nodi, indicare quali proprietà valgono per un albero:

in ogni suo nodo incidono due e soltanto due lati

□ è unico, se la rete è piana

- \square contiene ℓ –(n-1) lati
- □ è tale che rimuovendo tutti i suoi lati si ottengono due e solo due grafi separati
- X Nessuna delle precedenti affermazioni è giusta

Domanda N. 10

A regime variabile quasi stazionario, per t > 0, si consideri una relazione ingresso-uscita per la quale l'omogenea associata presenta due radici complesse coniugate con parte reale negativa e parte immaginaria non nulla. L'integrale dell'omogenea può essere espresso come somma di:

una funzione esponenziale decrescente ed una funzione sinusoidale (non smorzata)

□ due funzioni esponenziali decrescenti

□ due funzioni sinusoidali (non smorzate)

X due funzioni sinusoidali smorzate

☐ Nessuna delle precedenti affermazioni è corretta.

DOMANDA APERTA

Rispondere alla seguente domanda esponendo l'argomento in modo il più possibile esauriente, ma allo stesso tempo conciso, utilizzando il foglio a quadretti allegato.

Metodo dei potenziali ai nodi: deduzione, commenti e casi particolari (lati anomali).

VALUTAZIONE DELLE DOMANDE A RISPOSTA MULTIPLA	VALUTAZIONE DELLA DOMANDA APERTA	
VALUTAZIONE COMPLESSIVA		
DELLA PARTE TEORICA		