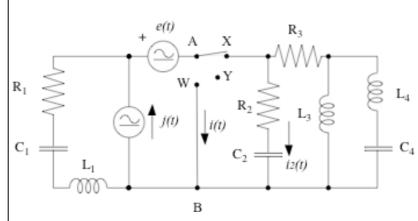

COMP	В				
COGNOME E	NOME				
MATRICOLA	POSTO				
CORSO DI LAUREA					
		DESIDERI 🗆	DUGHIERO 🗆	GUARNIERI □	MASCHIO

ESERCIZIO DI REGIME STAZIONARIO


Testo	Dati	Risultati
a rete è in regime stazionario.		
no noti i valori delle grandezze	$J_2 = -9 \text{ A}$	$I_1 = -6 A$
presse e delle resistenze.	$E_3 = 20 \text{ V}$	$I_I = -0$ A
	$E_4 = 100 \text{ V}$	
risolva la rete con il metodo delle	$E_5 = -250 \text{ V}$	$I_8 = 14 A$
orrenti di anello.	$E_8 = 180 \text{ V}$	
	$R_1 = R_5 = R_8 = 20 \Omega$	D = 2510 W
1,	$R_2 = R_6 = 30 \Omega$	$P_{J2} = 3510 W$
correnti I_1 e I_8 .	$R_4 = R_7 = 10 \Omega$	
potenze $P_{\rm J2}$ e $P_{\rm E4}$ uscenti dai	7 /	$P_{E4} = 2600 W$
eratori ideali J_2 e E_4 .		1 E4 2000 W

ESERCIZIO DI REGIME SINUSOIDALE

Testo

La rete di figura è in regime sinusoidale per qualunque posizione del commutatore. Sono noti i parametri della rete R_1 , R_2 , R_3 , L_1 , L_4 , C_1 , C_2 , C_4 . Con il commutatore in posizione X, è nota la corrente $i_2(t) = \sqrt{2I_2 sin(\omega t + \beta_2)}$, mentre la potenza entrante in R_3 è nulla. Determinare:

- il valore dell'induttanza L_3 ;
- l'espressione della tensione v_{AB}(t) con il commutatore in posizione Y;
- l'espressione della corrente *i(t)* con il commutatore in posizione W.

Dati

$$R_1 = 10 \Omega$$

$$C_2 = 100 \ \mu F$$

$$R_2 = 30 \Omega$$

$$C_4$$
=20 μF

$$R_3 = 10 \Omega$$

$$\omega = 1000 \text{ rad/s}$$

$$L_1 = 60 \text{ mH}$$

$$I_2 = 100 A$$

$$L_4 = 20 \text{ mH}$$

$$\beta_2 = \pi/4 \ rad$$

$$C_1$$
=20 μF

Risultati

$$L_3 = 30 \text{ mH}$$

$$v_{AB}(t) = 4000 \sqrt{2} \sin \left(1000 t + \frac{\pi}{4} \right) V$$

$$i(t) = 400 \sin(1000 t) A$$

VALUTAZIONE DEL PRIMO ESERCIZIO	
VALUTAZIONE DEL SECONDO ESERCIZIO	
VALUTAZIONE COMPLESSIVA DEGLI ESERCIZI	
VALUTAZIONE COMPLESSIVA DELLA PARTE TEORICA	
VALUTAZIONE COMPLESSIVA DEL COMPITO	