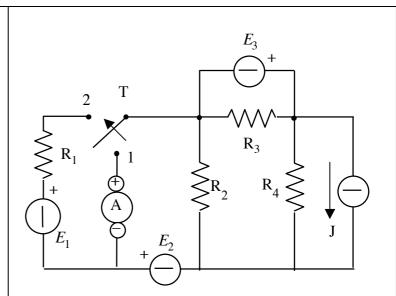
COMPITO DI ELETTROTECNICA 02-07-2009						Q
COGNOME E N	OME					
MATRICOLA				POSTO		
CORSO DI LAUREA (E SEDE)						
DESIDERI 🗆	DUGHI	ERO 🗆	GUARNIERI [MASCHI	<i>o</i> □

ESERCIZIO DI REGIME STAZIONARIO

Testo


Nel circuito di figura sono noti i valori di tutte le resistenze e di tutte le tensioni impresse dei generatori di tensione. E' inoltre noto il valore di corrente misurato dall'amperometro ideale (I_A), in regime stazionario, quando l'interruttore T è in 1.

Determinare:

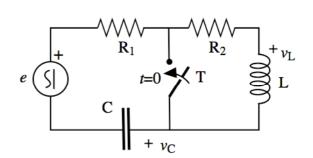
1. Il valore della corrente impressa J dal generatore di corrente

L'interruttore T commuta in 2. Nel nuovo regime stazionario, determinare:

2. La potenza P_{E1} uscente dal generatore E_1 .

Dati		Risultati		
$R_1 = 50 \Omega$	$R_2 = 50 \Omega$	J = -15 A		
$R_3 = 50 \Omega$	$R_4 = 50 \Omega$	P = 2500 W		
$E_1 = 500 \text{ V}$	$E_2 = 200 \text{ V}$	$P_{E1} = 2500 \text{ W}$		
$E_3 = 100 \text{ V}$	$I_{\rm A}=5~{ m A}$			

ESERCIZIO DI REGIME VARIABILE


Testo

Della rete sono noti tutti i parametri: R₁, R₂, L e C e la grandezza impressa $e(t) = \sqrt{2} E \operatorname{sen} (\omega t + \alpha).$

L'interruttore T è aperto per t < 0 e chiude in t = 0.

Determinare:

- l'andamento delle tensioni $v_L(t)$ e $v_C(t)$ per t > 0.

Dati

$$\omega = 2000 \text{ rad/s}$$

$$E = 380 \text{ V}$$

$$\alpha = -\pi/4$$
 rad

$$R_1 = 80 \Omega \qquad R_2 = 20 \Omega$$

$$R_2 = 20 \text{ O}$$

$$L = 40 \text{ mH}$$

$$L = 40 \text{ mH}$$
 $C = 6.25 \mu F$

Risultati

$$v_L(t) = 76 e^{-\frac{t}{0.002}} V$$

$$v_C(t) = \left[76 e^{-\frac{t}{0.0005}} + 380 \sin \left(\omega t - \frac{\pi}{2} \right) \right] V$$

VALUTAZIONE DEL PRIMO ESERCIZIO	
VALUTAZIONE DEL SECONDO ESERCIZIO	
VALUTAZIONE COMPLESSIVA DEGLI ESERCIZI	
VALUTAZIONE COMPLESSIVA DELLA PARTE TEORICA	
VALUTAZIONE COMPLESSIVA DEL COMPITO	