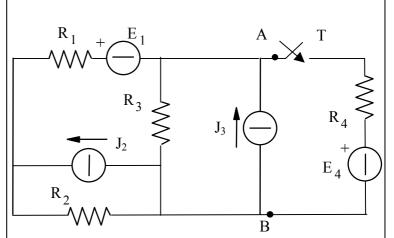
CO	MPITO DI E	LETTROTI	ECNICA 26-01	-2009)	C
COGNOME E N	OME					
MATRICOLA				POSTO		
CORSO DI LAUREA (E SEDE)						
DESIDERI	DUGHI	ERO 🗆	GUARNIERI □	/	MASCHIO 🗆	

ESERCIZIO DI REGIME STAZIONARIO

Testo


Nella rete di figura sono noti i valori delle resistenze e delle tensioni e correnti impresse dei generatori.

Con T aperto determinare:

- La tensione V_{AB0} tra i morsetti $A\ e\ B$
- La potenza uscente dal generatore di tensione E₁

Con T chiuso è nota la potenza entrante in E_4 , P_{E4} . Determinare:

- Il valore di R₄

Dati	Risultati

$$E_1 = 24 \text{ V}$$
 $J_2 = 38 \text{ A}$

$$J_3 = 3 A$$
 $E_4 = 40 V$

$$R_1 = 6 \Omega$$
 $R_2 = 12 \Omega$

$$R_3 = 18 \Omega$$
 $P_{E4} = 100 W$

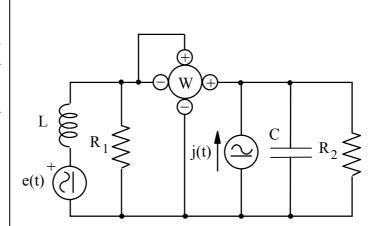
$$V_{AB0} = 243 \text{ V}$$

$$P_{\rm E1} = \! -252 \; W$$

$$R_4 = 72.2 \Omega$$

ESERCIZIO DI REGIME SINUSOIDALE

Testo


La rete di figura è in regime sinusoidale. I due generatori ideali hanno una tensione $e(t) = \sqrt{2E} \sin(\omega t + \alpha)$ ed una corrente $j(t) = \sqrt{2J} \sin(\omega t + \beta)$.

Sono noti: β , ω , J, R_1 , R_2 e L. E' nota la misura (Pw) del wattmetro ideale.

E' noto che la potenza reattiva (Q_L) entrante in L è nulla.

Determinare:

- il valore efficace (E) della tensione e(t);
- il valore della capacità C;
- il valore di α.

|--|

$$L = 80 \text{ mH}$$

$$\omega = 500 \text{ rad/s}$$

$$I = 3\sqrt{2} \Lambda$$

$$J = 3\sqrt{2} A$$
 $\beta = -\pi/2 \text{ rad}$

$$R_1 = 40 \text{ O}$$

$$R_1 = 40 \Omega$$
 $R_2 = 40 \Omega$

$$P_{W} = 90 \text{ W}$$

Risultati

$$E = 60 \text{ V}$$

$$C = 100 \ \mu F$$

$$\alpha = -3\pi/4 \text{ rad}$$

VALUTAZIONE DEL PRIMO ESERCIZIO	
VALUTAZIONE DEL SECONDO ESERCIZIO	
VALUTAZIONE COMPLESSIVA DEGLI ESERCIZI	
VALUTAZIONE COMPLESSIVA DELLA PARTE TEORICA	
VALUTAZIONE COMPLESSIVA DEL COMPITO	