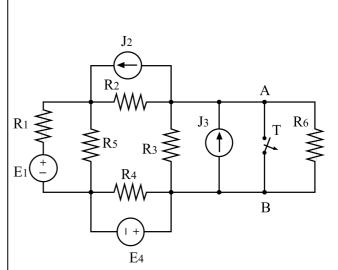
COMPITO DI ELETTROTECNICA 17-06-2010					
COGNOME E NOME					
MATRICOLA		ORDINAMENTO	509/99 270/04	POSTO	
CORSO DI LAUREA					
DESIDERI DUGH		JGHIERO 🗆	GUARNIERI □	MASCHIO	

ESERCIZIO DI REGIME STAZIONARIO


Testo

La rete è in regime stazionario, con l'interruttore T chiuso. Sono noti i valori delle tensioni e delle correnti impresse dai generatori ed i valori di tutte le resistenze, tranne R₃. In questa condizione, determinare:

1) la corrente di cortocircuito (I_{ABcc}) tra i morsetti A e B.

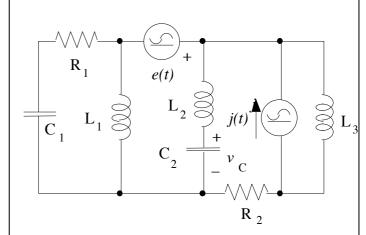
Successivamente, l'interruttore T viene aperto e la rete si trova in una nuova condizione di regime stazionario. In questa condizione determinare:

- 2) il valore della resistenza R₃, con la condizione di massimo trasferimento di potenza su R₆ (adattamento del carico);
- 3) la potenza P_{J3} uscente dal generatore ideale di corrente J₃.

	Dati	Risultati
$R_1 = 50 \Omega$	$R_2 = 25 \Omega$	$I_{ABcc} = 2.8 A$
$R_4 = 50 \Omega$	$R_5 = 50 \Omega$	$R_3 = 50 \Omega$
$R_6 = 25 \Omega$		$P_{J3} = 280 \text{ W}$
$E_1 = 80 \text{ V}$	$J_2 = 6 A$	
$J_3 = 8 A$	$E_4 = 150 \text{ V}$	

ESERCIZIO DI REGIME SINUSOIDALE

Testo


La rete è in regime sinusoidale e sono noti i parametri di tutti i bipoli passivi e le espressioni delle grandezze impresse $e(t) = E_M sen(\omega t + \alpha)$ e $j(t) = J_M sen(\omega t + \beta)$.

Determinare:

- l'espressione temporale della tensione $v_{C2}(t)$;
- le potenze attiva P_E e reattiva Q_E uscenti dal generatore ideale di tensione.

Tracciare sul foglio a quadretti il diagramma fasoriale comprendente:

- le tensioni e le correnti dei generatori, le correnti in L₂ e R₂, la tensione su C₂.

Dati

$$R_1 = 100 \ \Omega$$
 $R_2 = 120 \ \Omega$

$$C_1 = 25 \mu F$$
 $C_2 = 125 \mu F$

$$L_1 = 250 \text{ mH}$$
 $L_2 = 50 \text{ mH}$

$$L_3 = 300 \text{ mH}$$
 $\omega = 400 \text{ rad/s}$

$$E_M = 200 \text{ V}$$
 $\alpha = -\pi/4 \text{ rad}$

$$J_M = 2 \text{ A}$$
 $\beta = 3\pi/4 \text{ rad}$

Risultati

$$v_{C2}(t) = 40 \operatorname{sen}(400 t + 3\pi/4)$$

$$P_E = 100 \text{ W}$$

$$Q_E = 100 \text{ VAR}$$

VALUTAZIONE DEL PRIMO ESERCIZIO	
VALUTAZIONE DEL SECONDO ESERCIZIO	
VALUTAZIONE COMPLESSIVA DEGLI ESERCIZI	
VALUTAZIONE COMPLESSIVA DELLA PARTE TEORICA	
VALUTAZIONE COMPLESSIVA DEL COMPITO	