	COMPTTO	NT F		*NIT# 27 04	1 201	^			
COMPITO DI E			LETTROTE	INICA 27-UI	1-201	.0		D	
					POSTO	<u>, </u>			
MATRICOLA			10310						
CORSO DI LAUREA (E SEDE) DESIDERI□ DUGHI		LERO□	GUARNIERI		MASCH	<u>το</u> Π			
000									
• E' unica la risposta giusta a ogni domanda • Per annullare una risposta, scrivere "No" a sinistra della casella contrassegnata per errore									
Domanda N. 1 A regime stazionario, si consideri un generatore elettrico con f.e.m. E (f.e.m. del generatore), e resistenza R_i (resistenza interna del generatore), connesso ad un carico (resistore di resistenza R_u). In condizione di adattamento del carico, vale che:									
X	la potenza trasferita al carico uguaglia quella assorbita da $R_{\rm i}$ il rendimento del generatore è unitario $R_{\rm u}=0$								
	$R_i = -R_u$ Nessuna delle precedenti affermazioni è corretta								
Domanda N. 2 A regime stazionario per un doppio bipolo ideale inerte di ordine zero passivo, che ammette la rappresentazione controllata in corrente, vale che: $R_{11} = R_{22}$ $R_{11}R_{22} \ge (R_{12} + R_{21})^2$									
X	$R_{11}R_{22} \ge \left(\frac{R_{12} + R_{21}}{2}\right)^2$								
	$R_{11}R_{12} \ge (R_{22} + R_{21})^2$ Nessuna delle precedenti affermazioni è corretta								
A reg	anda N. 3 time stazionario, data un , convenzionati tutti i bip $\alpha_{hk} = \beta_{kh}$ $G_{hk} = G_{kh}$ $R_{hk} = G_{kh}$ $R_{hk} = -G_{kh}$ Nessuna delle preceden	ooli con la	a stessa convenzione		_		corrent	e e resistori	
Domanda N. 4 In regime sinusoidale, è nulla la somma algebrica: X dei fasori delle correnti dei lati appartenenti ad un qualsiasi insieme di taglio □ delle fasi iniziali delle correnti dei lati appartenenti ad un qualsiasi insieme di taglio □ delle ampiezze delle correnti dei lati appartenenti ad un qualsiasi insieme di taglio □ dei valori efficaci delle correnti dei lati appartenenti ad un qualsiasi insieme di taglio □ Nessuna delle precedenti affermazioni è corretta									
Domanda N. 5 A regime sinusoidale, dato un bipolo convenzionato con la convenzione degli utilizzatori, con tensione $v(t) = \sqrt{2} V sen(\omega t + \alpha)$, corrente $i(t) = \sqrt{2} I sen(\omega t + \beta)$ e con $\varphi = \alpha - \beta$, la potenza istantanea entrante p(t) è pari									
v(t) =a:	= $\sqrt{2} V sen(\omega t + \alpha)$, cor	rente $i(t)$	$= \sqrt{2} I \operatorname{sen} (\omega t + \beta)$	e con $\varphi = \alpha - \beta$, la	potenza	ıstantanea	entrant	e p(t) è pari	
□ v	$p(t) = V I \cos \varphi + j$	•							
X	$p(t) = V I \cos \varphi - V$ $p(t) = V I \operatorname{sen} \varphi - V$,	• *						
	$p(t) = V I \operatorname{sen} \varphi + V$	•	· · <i>p</i>)						

Nessuna delle precedenti affermazioni è corretta

Domai	nda	N	6

A regime sinusoidale, il valore efficace di una funzione sinusoidale a(t) è:

 \Box la radice quadrata del valore medio di a(t) su un periodo

X la radice quadrata del valore medio di $a^2(t)$ su un periodo

 \Box il valore medio del modulo di a(t) su un periodo

 \Box il valore medio di a(t) su un periodo

☐ Nessuna delle precedenti affermazioni è corretta

Domanda N. 7

In regime variabile, si consideri il caso di una maglia formata da un generatore ideale di tensione costante E che alimenta una serie RL, con R>0 e L>0. Presa come uscita la corrente nei bipoli, la costante di tempo T della curva esponenziale del transitorio è pari a:

D

 $\Box \qquad T = \frac{R}{L}$

 $X T = \frac{L}{R}$

 \Box T = R + L

 \Box T = R L

☐ Nessuna delle precedenti affermazioni è corretta

Domanda N. 8

In regime variabile, si consideri il caso di una maglia formata da un generatore ideale di tensione costante E che alimenta una serie RLC, con R>0, L>0 e C>0. Presa come uscita la corrente nei bipoli, la soluzione dell'equazione caratteristica può avere:

☐ due radici reali distinte, entrambe positive

X due radici complesse coniugate, entrambe con parte reale negativa

una radice reale negativa e una radice complessa con parte reale positiva

due radici reali distinte, di cui una positiva e una negativa

☐ Nessuna delle precedenti affermazioni è corretta

Domanda N. 9

Il generatore di corrente pilotato in tensione, con la convenzione degli utilizzatori alle due porte, ha relazioni:

 \Box $v_1 = 0$; $v_2 = k_r i_1$

 $X i_1 = 0 ; i_2 = k_g v_1$

 \Box $v_1 = 0$; $i_2 = k_B i_1$

 \Box $i_1 = 0$; $v_2 = k_\alpha v_1$

Nessuna delle precedenti affermazioni è corretta

Domanda N. 10

Dato un grafo piano connesso di ℓ lati e n nodi, vale che:

un sistema di maglie indipendenti permette di scrivere $\ell + n - 1$ equazioni indipendenti della LKT sulle tensioni

un sistema di tagli indipendenti permette di scrivere $\ell - n$ equazioni indipendenti della LKC sulle correnti

 \Box dalla LKT si ottengono n + 1 equazioni indipendenti sulle tensioni

dalla LKC si ottengono $\ell - n + 1$ equazioni indipendenti sulle correnti

X Nessuna delle precedenti affermazioni è corretta

VALUTAZIONE COMPLESSIVA