COMPITO DI ELETTROTECNICA 13-09-2011				
COGNOME E NOME				
MATRICOLA			POSTO	
CORSO DI LAUREA				
GUARNIERI 🗆			MASCHIO	

ESERCIZIO DI REGIME STAZIONARIO

Testo

Nel circuito di figura, in regime stazionario, sono noti i valori di tutte le resistenze, tranne R_4 e della capacità C, la corrente impressa del generatore di corrente e le tensioni impresse dei generatori di tensione.

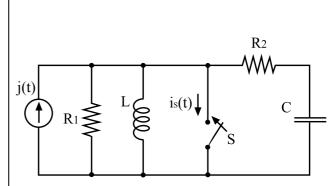
Sapendo che, con il deviatore T chiuso sul nodo E, la potenza dissipata nella resistenza R_6 è massima, determinare:

- 1. il valore della resistenza R_4
- 2. La potenza P_{E5} uscente dal generatore E_5 con T chiuso sul nodo E

L'energia W_c immagazzinata nel condensatore C con T chiuso sul nodo F.

	E_5 A F
\int_{J_2}	$\left(\begin{array}{c} + \\ - \end{array}\right)E_4$ $E \bullet T$
R_2	$\begin{cases} R_1 \\ \\ \\ \\ R_4 \end{cases} \qquad R_6 \leqslant \qquad \overline{C} $
	R_3 R_5 R_5 R_5

Dati		Risultati	
$R_I = 2 \Omega$	$R_2 = 8 \Omega$	$R_4 = 3 \Omega$	
$R_3 = 4 \Omega$	$R_5 = 10 \ \Omega$	$P_{E5} = -5 \text{ W}$	
$R_6 = 12 \Omega$	$C = 40 \mu F$	1 ES S W	
$E_4 = 30 \text{ V}$	$E_s = 10 \text{ V}$	$W_c = 2.88 \text{ mJ}$	
$J_2 = 3 \text{ A}$			


ESERCIZIO DI REGIME SINUSOIDALE+VARIABILE

Testo

Nella rete di figura sono noti i parametri R_1 , R_2 , L, e C ed è nota l'espressione della corrente impressa $j(t) = J_M sin(\omega t + \alpha)$. L'interruttore S è inizialmente aperto e viene chiuso all'istante t = 0.

Determinare:

- l'andamento della corrente $i_S(t)$ per t > 0.

Dati

 $J_M = 5 \text{ A}$

 $\omega = 100 \text{ rad/s}$

 $\alpha = -\pi/4$ rad

 $R_1 = 20 \Omega$

 $R_2 = 10 \Omega$

L = 200 mH

 $C = 1000 \mu F$

 $i_S(t) =$

 $\left[5 \sin \left(100 t - \frac{\pi}{4} \right) + 1.25 \sqrt{2} - 2.5 \sqrt{2} e^{-\frac{t}{0.01}} \right] A$

Risultati

VALUTAZIONE DEL PRIMO ESERCIZIO	
VALUTAZIONE DEL SECONDO ESERCIZIO	
VALUTAZIONE COMPLESSIVA DEGLI ESERCIZI	
VALUTAZIONE COMPLESSIVA DELLA PARTE TEORICA	
VALUTAZIONE COMPLESSIVA DEL COMPITO	