COMPITO DI ELETTROTECNICA 28-06-2012				D	
COGNOME E N	OME				
MATRICOLA			POSTO		
CORSO DI LAUREA					
GUARNIERI 🗆			MASCHIO		

ESERCIZIO DI REGIME STAZIONARIO

Testo

La rete è in regime stazionario con l'interruttore S aperto. Sono noti i valori delle resistenze e delle tensioni e correnti impresse dai generatori. In questa condizione determinare:

- 1) la tensione V_{AB0} tra i morsetti A e B;
- 2) la potenza P_{J4} erogata dal generatore di corrente J₄.

In seguito l'interruttore S viene chiuso e la rete si trova in una nuova condizione di regime stazionario. In questa situazione determinare:

3) l'intensità della corrente I₆.

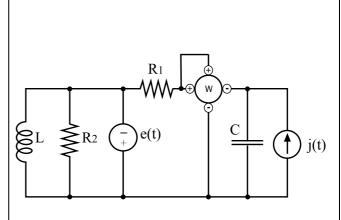
R1	E_3 A S R_4 R_4 R_6 R_6
$R1 \Longrightarrow R2 \Longrightarrow$ $E1 \stackrel{+}{-}$	$ \begin{array}{c c} R_{5} & R_{6} \\ \hline R_{5} & E_{6} \\ \hline R_{5} & E_{6} \end{array} $

3) I intensità della corrente 16.	
Dati	Risultati
$E_1 = 500 \text{ V}$	
$E_3 = 16 \text{ V}$	$V_{AB0} = 108 \text{ V}$
$E_6 = 20 \text{ V}$	A ABO
$J_4 = 16 \text{ A}$	$P_{J4} = 2496 \text{ W}$
$R_1 = 10 \Omega$ $R_2 = 15 \Omega$	$I_6 = 11 A$
$R_3 = 10 \Omega$	
$R_4 = 3 \Omega$	
$R_5 = 4 \Omega$	
$R_6 = 4.8 \Omega$	

ESERCIZIO DI REGIME SINUSOIDALE

Testo

La rete è in regime sinusoidale e sono note le espressioni delle grandezze impresse $e(t) = E_M sen(\omega t + \alpha)$ e $j(t) = J_M sen(\omega t + \beta)$.


Sono noti inoltre:

- i valori dei bipoli passivi, tranne quello della resistenza R₁;
- la potenza complessa $(\dot{A}_{\rm E})$ uscente dal generatore ideale di tensione sinusoidale e(t).

Determinare:

- il valore della resistenza R₁;

il valore misurato dal wattmetro ideale (Pw).

Dati

 $R_2 = 40 \Omega$

L = 5 mH

 $C = 12.5 \mu F$

 $\omega = 4000 \text{ rad/s}$

 $E_{\rm M} = 400\sqrt{2} \ {\rm V}$

 $\alpha = \pi \text{ rad}$

 $J_{\rm M} = 20 {\rm A}$

 $\beta = 5\pi/4 \text{ rad}$

 $\dot{A}_E = 8000 + j8000$

Risultati

$$R_1 = 60 \Omega$$

$$P_{\rm W} = -2000 \ {\rm W}$$

VALUTAZIONE DEL PRIMO ESERCIZIO	
VALUTAZIONE DEL SECONDO ESERCIZIO	
VALUTAZIONE COMPLESSIVA DEGLI ESERCIZI	
VALUTAZIONE COMPLESSIVA DELLA PARTE TEORICA	
VALUTAZIONE COMPLESSIVA DEL COMPITO	