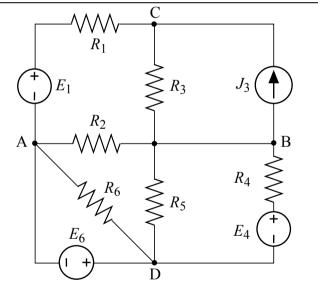
COMPITO DI ELETTROTECNICA 29-06-2018			Α	
COGNOME E NOME	SOLUZIONI			
MATRICOLA POSTO				
CORSO DI LAUREA				
GUARNIERI □ FORZAN/SIENI □				


VALUTAZIONE DELLA PARTE TEORICA	
VALUTAZIONE DEL PRIMO ESERCIZIO	
VALUTAZIONE DEL SECONDO ESERCIZIO	
VALUTAZIONE DEL TERZO ESERCIZIO	
VALUTAZIONE COMPLESSIVA DEGLI ESERCIZI	
VALUTAZIONE COMPLESSIVA DEL COMPITO	

La rete è in regime stazionario e sono noti i valori di tutte le grandezze impresse e di tutte le resistenze.

Risolvere la rete con il metodo dei potenziali ai nodi con A come nodo di massa.

Determinare:

- i potenziali $U_{\rm B}$, $U_{\rm C}$ e $U_{\rm D}$ dei nodi B, C e D;
- le potenze $P_{\rm E1}$ e $P_{\rm E6}$ uscenti rispettivamente dai generatori ideali di tensione E_1 e E_6

Dati

$$R_1 = 5 \Omega \qquad R_2 = 4 \Omega$$

$$R_2 = 4 \Omega$$

$$R_3 = 2 \Omega \qquad R_4 = 10 \Omega$$

$$R_{\perp} = 10 \Omega$$

$$R_5 = 2.5 \Omega$$

$$R_6 = 2 \Omega$$

$$E_1 = -215$$
 V $J_3 = 5$ A

$$I_2$$
 - 5 Δ

$$E_4 = 100 \text{ V}$$
 $E_6 = 80 \text{ V}$

$$E_{\epsilon} = 80 \text{ V}$$

$$U_{\rm B}$$
 = 20 V

$$U_{\rm C}$$
 = -40 V

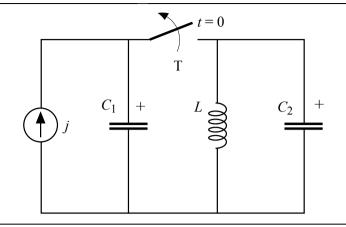
$$U_{\rm D}$$
 = 80 V

$$P_{\rm E1} = 7525 \ {\rm W}$$

$$P_{\rm E6} = 6400 \ {\rm W}$$

2) ESERCIZIO DI RETI VARIABILI

Sono noti tutti i parametri dei bipoli passivi e l'espressione della corrente impressa:


$$j(t) = \sqrt{2} J sen(\omega t + \beta)$$

Per t < 0 l'interruttore T è chiuso e la rete è in regime sinusoidale. In t = 0 T apre.

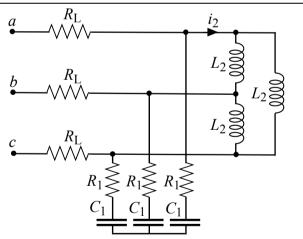
Per t > 0 determinare:

le espressioni temporali delle tensioni $v_{C1}(t)$ e $v_{C2}(t)$ dei condensatori C_1 e C_2

			Dati
ω	=	200	rad/s
J	=	16	A
β	=	$\pi/4$	rad
C_1	=	1	mF
C_2	=	4	mF
L	=	25	mH

Riportare qui i risultati

$$v_{\rm C1}(t) = 60 + \sqrt{2} \ 80 \ \text{sen} \ (100t - \pi/4) \ \text{V}$$


$$v_{\rm C2}(t) = -20 \cos 100t + 10 \sin 100t \text{ V}$$

3) ESERCIZIO DI RETI TRIFASI

La rete trifase è alimentata da una terna di tensioni concatenate simmetriche. Sono noti $R_{\rm L}$, R_1 , C_1 , L_2 e la potenza reattiva trifase Q_2 assorbita dalle induttanze L_2 .

Determinare:

- il valore efficace I_2 della corrente di linea i_2 ;
- le potenze attiva P_1 e reattiva Q_1 assorbite dal carico trifase formato da R_1 , C_1 ;
- il valore efficace $V_{\rm L}$ della tensione su $R_{\rm L}$;

Dati

$$\omega = 500$$
 rad/s

$$R_{\rm L} = 40 \quad \Omega$$

$$R_1 = 40 \quad \Omega \quad C_1 = 50 \, \mu\text{F}$$

$$C_1 = 50 \text{ uF}$$

$$L_2 = 240$$

$$L_2 = 240$$
 mH $Q_2 = 4320$ VAR

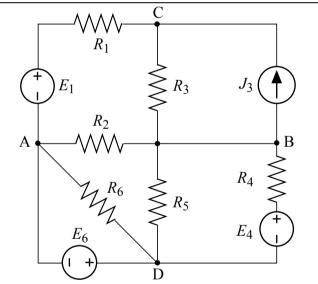
$$I_2 = 6 \text{ A}$$

$$P_{\star} = 2160 \text{ W}$$

$$P_1 = 2160 \text{ W}$$
 $Q_1 = -2160 \text{ VAR}$

$$V_{\rm L} = \sqrt{2} \, 120 = 169,7 \, \text{ V}$$

COMPITO DI ELETTROTECNICA 29-06-2018			В	
COGNOME E NOME	SOLUZIONI			
MATRICOLA POSTO				
CORSO DI LAUREA				
GUARNIERI ☐ FORZAN/SIENI ☐				


VALUTAZIONE DELLA PARTE TEORICA	
VALUTAZIONE DEL PRIMO ESERCIZIO	
VALUTAZIONE DEL SECONDO ESERCIZIO	
VALUTAZIONE DEL TERZO ESERCIZIO	
VALUTAZIONE COMPLESSIVA DEGLI ESERCIZI	
VALUTAZIONE COMPLESSIVA DEL COMPITO	

La rete è in regime stazionario e sono noti i valori di tutte le grandezze impresse e di tutte le resistenze.

Risolvere la rete con il metodo dei potenziali ai nodi con A come nodo di massa.

Determinare:

- i potenziali $U_{\rm B}$, $U_{\rm C}$ e $U_{\rm D}$ dei nodi B, C e D;
- le potenze $P_{\rm E1}$ e $P_{\rm E6}$ uscenti rispettivamente dai generatori ideali di tensione E_1 e E_6

Dati

$$R_1 = 4 \Omega R_2 = 5 \Omega$$

$$R_3 = 2 \Omega R_4 = 10 \Omega$$

$$R_5 = 2.5 \Omega \qquad R_6 = 2 \Omega$$

$$E_1 = -172 \text{ V}$$
 $J_3 = 8 \text{ A}$
 $E_4 = 310 \text{ V}$ $E_6 = 70 \text{ V}$

$$E_4 = 310 \text{ V}$$
 $E_6 = 70 \text{ V}$

$$U_{\rm B}$$
 = 40 V

$$U_{\rm C}$$
 = -20 V

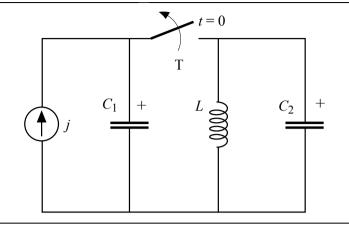
$$U_{\rm D}$$
 = 70 V

$$P_{\rm E1} = 6536 \ {\rm W}$$

$$P_{\rm E6} = 5670 \ {\rm W}$$

2) ESERCIZIO DI RETI VARIIABILI

Sono noti tutti i parametri dei bipoli passivi e l'espressione della corrente impressa:


$$j(t) = \sqrt{2} J sen(\omega t + \beta)$$

Per t < 0 l'interruttore T è chiuso e la rete è in regime sinusoidale. In t = 0 T apre.

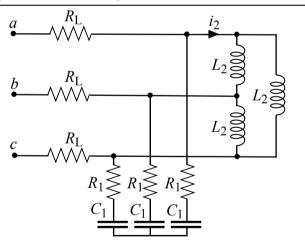
Per t > 0 determinare:

le espressioni temporali delle tensioni $v_{C1}(t)$ e $v_{C2}(t)$ dei condensatori C_1 e C_2

		` /	
ω	=	200	Dati rad/s
J	=	32	A
β	=	$-\pi/4$	rad
C_1	=	0,25	mF
C_2	=	1	mF
L	=	100	mH

Riportare qui i risultati

$$v_{\rm C1}(t) = 480 + \sqrt{2} \, 640 \, \text{sen} \, (200t - \pi \, 3/4)$$


$$v_{\rm C2}(t) = -160 \cos 100t - 80 \sin 100t$$

3) ESERCIZIO DI RETI TRIFASI

La rete trifase è alimentata da una terna di tensioni concatenate simmetriche. Sono noti R_L , R_1 , C_1 , L_2 e la potenza reattiva trifase Q_2 assorbita dalle induttanze L_2 .

Determinare:

- il valore efficace I_2 della corrente di linea i_2 ;
- le potenze attiva P_1 e reattiva Q_1 assorbite dal carico trifase formato da R_1 , C_1 ;
- il valore efficace $V_{\rm L}$ della tensione su $R_{\rm L}$;

Dati

$$\omega$$
 =2500 rad/s

$$R_{\rm L} = 10 \quad \Omega$$

$$R_1 = 10 \quad \Omega \quad C_1 = 40 \, \mu\text{F}$$

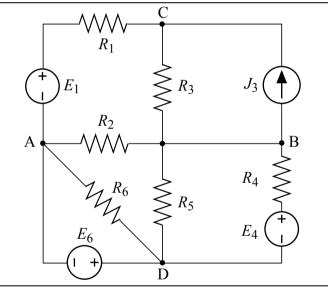
$$L_2 = 12$$
 mH $Q_2 = 1920$ VAR

$$I_2 = 8 \text{ A}$$

$$P_1 = 960 \text{ W}$$
 $Q_1 = -960 \text{ VAR}$

$$V_{\rm L} = \sqrt{2} \, 40 = 56,56 \, \text{ V}$$

COMPITO DI ELETTROTECNICA 29-06-2018			С	
COGNOME E NOME	SOLUZIONI			
MATRICOLA POSTO				
CORSO DI LAUREA				
GUARNIERI □ FORZAN/SIENI □				


VALUTAZIONE DELLA PARTE TEORICA	
VALUTAZIONE DEL PRIMO ESERCIZIO	
VALUTAZIONE DEL SECONDO ESERCIZIO	
VALUTAZIONE DEL TERZO ESERCIZIO	
VALUTAZIONE COMPLESSIVA DEGLI ESERCIZI	
VALUTAZIONE COMPLESSIVA DEL COMPITO	

La rete è in regime stazionario e sono noti i valori di tutte le grandezze impresse e di tutte le resistenze.

Risolvere la rete con il metodo dei potenziali ai nodi con A come nodo di massa.

Determinare:

- i potenziali $U_{\rm B}$, $U_{\rm C}$ e $U_{\rm D}$ dei nodi B, C e D;
- le potenze $P_{\rm E1}$ e $P_{\rm E6}$ uscenti rispettivamente dai generatori ideali di tensione E_1 e E_6

Dati

$$R_1 = 4 \Omega R_2 = 10 \Omega$$

$$R_3 = 2 \Omega \qquad R_4 = 5 \Omega$$

$$R_5 = 2.5 \Omega \qquad R_6 = 2 \Omega$$

$$E_1 = -184 \quad V \qquad J_3 = 6 \quad A$$

$$E_1 = -184$$
 V $J_3 = 6$ A $E_4 = 100$ V $E_6 = 50$ V

$$U_{\rm B}$$
 = 20 V

$$U_{\rm C}$$
 = -40 V

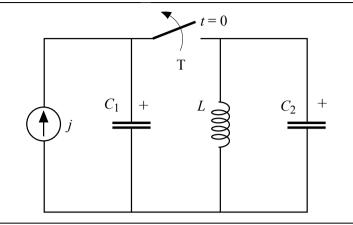
$$U_{\rm D}$$
 = 50 V

$$P_{\rm E1} = 6624 \ {\rm W}$$

$$P_{\rm E6} = 3150 \ {\rm W}$$

2) ESERCIZIO DI RETI VARIABILI

Sono noti tutti i parametri dei bipoli passivi e l'espressione della corrente impressa:


$$j(t) = \sqrt{2} J sen(\omega t + \beta)$$

Per t < 0 l'interruttore T è chiuso e la rete è in regime sinusoidale. In t = 0 T apre.

Per t > 0 determinare:

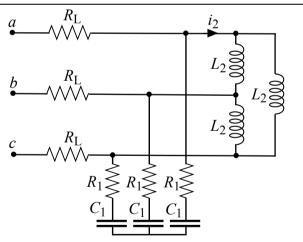
le espressioni temporali delle tensioni $v_{C1}(t)$ e $v_{C2}(t)$ dei condensatori C_1 e C_2

ω	=	100	Dati rad/s
J	=	8	A
β	=	$\pi 3/4$	rad
C_1	=	4	mF
C_2	=	8	mF
L	=	50	mH

Riportare qui i risultati

$$v_{C1}(t) = -12 + \sqrt{2} \ 20 \ \text{sen} \ (100t + \pi/4)$$

$$v_{C2}(t) = 8 \cos 50t + 4 \sin 50t$$


$$v_{C2}(t) = 8 \cos 50t + 4 \sin 50t$$

3) ESERCIZIO DI RETI TRIFASI

La rete trifase è alimentata da una terna di tensioni concatenate simmetriche. Sono noti $R_{\rm L}$, R_1 , C_1 , L_2 e la potenza reattiva trifase Q_2 assorbita dalle induttanze L_2 .

Determinare:

- il valore efficace I_2 della corrente di linea i_2 ;
- le potenze attiva P_1 e reattiva Q_1 assorbite dal carico trifase formato da R_1 , C_1 ;
- il valore efficace $V_{\rm L}$ della tensione su $R_{\rm L}$;

Dati

$$\omega$$
 =1000 rad/s

$$R_{\rm L} = 25 \quad \Omega$$

$$R_1 = 25$$
 Ω $C_1 = 40 \mu F$

$$C_1 = 40 \text{ uF}$$

$$L_2 = 75$$
 m

$$L_2 = 75$$
 mH $Q_2 = 2700 \text{ VAR}$

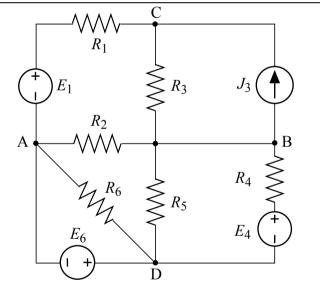
$$I_2 = 6 \text{ A}$$

$$P_{*} = 1350 \text{ W}$$

$$P_1 = 1350 \text{ W}$$
 $Q_1 = -1350 \text{ VAR}$

$$V_{\rm L} = \sqrt{2.75} = 106 \text{ V}$$

COMPITO DI ELETTROTECNICA 29-06-2018			D	
COGNOME E NOME	SOLUZIONI			
MATRICOLA POSTO				
CORSO DI LAUREA				
GUARNIERI □ FORZAN/SIENI □				


VALUTAZIONE DELLA PARTE TEORICA	
VALUTAZIONE DEL PRIMO ESERCIZIO	
VALUTAZIONE DEL SECONDO ESERCIZIO	
VALUTAZIONE DEL TERZO ESERCIZIO	
VALUTAZIONE COMPLESSIVA DEGLI ESERCIZI	
VALUTAZIONE COMPLESSIVA DEL COMPITO	

La rete è in regime stazionario e sono noti i valori di tutte le grandezze impresse e di tutte le resistenze.

Risolvere la rete con il metodo dei potenziali ai nodi con A come nodo di massa.

Determinare:

- i potenziali $U_{\rm B}, U_{\rm C}$ e $U_{\rm D}$ dei nodi B, C e D;
- le potenze $P_{\rm E1}$ e $P_{\rm E6}$ uscenti rispettivamente dai generatori ideali di tensione E_1 e E_6

Dati

$$R_1 = 5 \Omega R_2 = 10 \Omega$$

$$R_3 = 2 \Omega \qquad R_4 = 4 \Omega$$

$$R_5 = 2.5 \Omega \qquad R_6 = 2 \Omega$$

$$E_1 = -205 \quad V \qquad J_3 = 7 \quad A$$

$$E_4 = 112 \text{ V}$$
 $E_6 = 60 \text{ V}$

$$U_{\rm B}$$
 = 40 V

$$U_{\rm C} = -20 \text{ V}$$

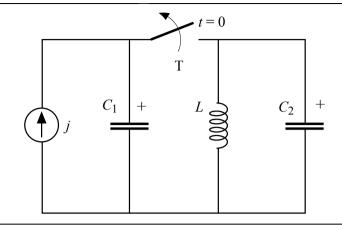
$$U_{\rm D}$$
 = 60 V

$$P_{\rm E1} = 7585 \ {\rm W}$$

$$P_{\rm E6} = 4260 \ {\rm W}$$

2) ESERCIZIO DI RETI VARIABILI

Sono noti tutti i parametri dei bipoli passivi e l'espressione della corrente impressa:


$$j(t) = \sqrt{2} J sen(\omega t + \beta)$$

Per t < 0 l'interruttore T è chiuso e la rete è in regime sinusoidale. In t = 0 T apre.

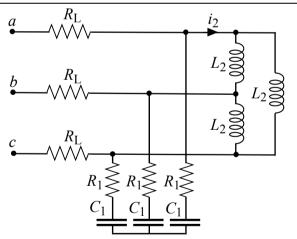
Per t > 0 determinare:

le espressioni temporali delle tensioni $v_{C1}(t)$ e $v_{C2}(t)$ dei condensatori C_1 e C_2

ω	=	100	Dati rad/s
J	=	4	A
β	=	$-\pi 3/4$	rad
C_1	=	0,04	mF
C_2	=	0,08	mF
L	=	5000	mH

Riportare qui i risultati

$$v_{\rm C1}(t) = -600 + \sqrt{2} \ 1000 \ \text{sen} \ (100t + \pi \ 3/4)$$


$$v_{\rm C2}(t) = 400 \cos 50t - 200 \sin 50t$$

3) ESERCIZIO DI RETI TRIFASI

La rete trifase è alimentata da una terna di tensioni concatenate simmetriche. Sono noti $R_{\rm L}$, R_1 , C_1 , L_2 e la potenza reattiva trifase Q_2 assorbita dalle induttanze L_2 .

Determinare:

- il valore efficace I_2 della corrente di linea i_2 ;
- le potenze attiva P_1 e reattiva Q_1 assorbite dal carico trifase formato da R_1 , C_1 ;
- il valore efficace $V_{\rm L}$ della tensione su $R_{\rm L}$;

Dati

$$\omega = 250$$
 rad/s

$$R_{\rm L} = 20 \quad \Omega$$

$$R_1 = 20$$
 Ω $C_1 = 200 \mu F$

$$C_1 = 200 \text{ µF}$$

$$L_2 = 240$$

$$L_2 = 240$$
 mH $Q_2 = 3840$ VAR

$$I_2 = 8 \text{ A}$$

$$P_{\star} = 1920 \text{ W}$$

$$P_1 = 1920 \text{ W}$$
 $Q_1 = -1920 \text{ VAR}$

$$V_{\rm L} = \sqrt{2} \ 80 = 113 \ {\rm V}$$