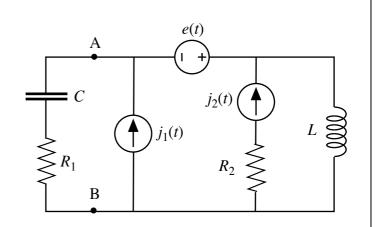
COMPITO DI ELETTROTECNICA – ESERCIZI – 05-02-2019			В
COGNOME E NOME SOLUZIONI			
MATRICOLA POSTO			
DUGHIERO □		GUARNIERI 🔲	

VALUTAZIONE DELLA PARTE TEORICA	
VALUTAZIONE DEL PRIMO ESERCIZIO	
VALUTAZIONE DEL SECONDO ESERCIZIO	
VALUTAZIONE DEL TERZO ESERCIZIO	
VALUTAZIONE COMPLESSIVA DEGLI ESERCIZI	
VALUTAZIONE COMPLESSIVA DEL COMPITO	


1) ESERCIZIO DI REGIME SINUSOIDALE

Testo

La rete è in regime sinusoidale e sono note le espressioni temporali delle tensioni e correnti impresse e i valori delle capacità, induttanze e resistenze.

Determinare:

- i parametri \bar{E}_{eq} e \dot{Z}_{eq} del generatore di Thévenin equivalente alla rete a destra dei morsetti A-B;
- Le potenze attiva P_{jl} e reattiva Q_{jl} erogate dal generatore $j_1(t)$.

Dati

$$R_1 = 100 \ \Omega$$
 $R_2 = 100 \ \Omega$

$$C = 10 \mu F$$
 $L = 100 mH$

$$e(t) = 200 \sqrt{2} sen(1000t)$$

$$j_1(t) = 8 \sqrt{2} sen(1000t - \pi/2)$$

$$j_2(t) = 4 \ sen(1000t - \pi/4)$$

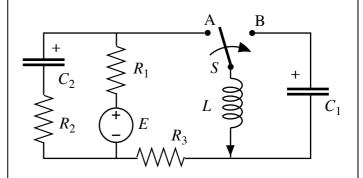
Risultati

$$\overline{E}_{eq} = 800 + j 200$$

$$\dot{Z}_{eq} = j 100$$

$$P_{j1} = 4800 \text{ W}$$

$$Q_{jl} = 8000 \text{ VAR}$$


2) ESERCIZIO DI REGIME VARIABILE

Testo

Sono noti i valori di R_1 , R_2 , R_3 , C_1 , C_2 , L e E. Per t < 0 la rete è in regime stazionario, con S in A e C_1 scarico. In t = 0 S commuta da A a B.

Determinare per t > 0:

- la tensione $v_{C2}(t)$
- la corrente $i_L(t)$

Dati

$$E = 800 \text{ V}$$

$$R_1 = 40 \Omega$$

$$R_2 = 10 \Omega$$

$$R_3 = 60 \Omega$$

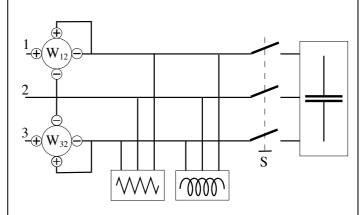
$$C_1 = 320 \ \mu F$$

$$C_2 = 320 \ \mu F$$

$$L = 50 \text{ mH}$$

Risultati

$$v_{\rm C2}(t) = 800 - 320 \ e^{-t/16 \ ms} \ \ V$$


$$i_L(t) = 8 \cos 250 t$$
 A

3) ESERCIZIO DI RETI TRIFASI

Testo

La rete trifase è alimentata ai morsetti 1, 2, 3 da una terna simmetrica diretta di tensioni concatenate di valore efficace V e pulsazione ω . I due wattmetri sono inseriti in inserzione Aron e la resistenza del carico puramente resistivo connesso a triangolo vale R. Sono note le potenze reattive assorbite dalla rete Q_A con il sezionatore S aperto e Q_C con il tasto S chiuso. Determinare:

- Le indicazioni dei wattmetri W_{12} e W_{32} con il tasto S chiuso
- Le indicazioni dei wattmetri W'₁₂ e W'₃₂ con il tasto S aperto

Dati

$$V = 400 \text{ V}$$

$$\omega = 314 \text{ rad/s}$$

$$R = 25 \Omega$$

$$Q_{\rm C} = 0 \text{ VAR}$$

$$Q_A = 8000\sqrt{3} \text{ VAR}$$

Risultati

S chiuso

S aperto

$$W_{12} = 9600 \text{ W}$$

$$W'_{12} = 5600 \text{ W}$$

$$W_{32} = 9600 \text{ W}$$

$$W'_{32} = 13600 \text{ W}$$