Università di Padova - Scuola di Ingegneria

Massimo Guarnieri

Elettrotecnica Capitolo 20 Reti in regime variabile aperiodico

Introduzione

Dopo l'istante critico la rete evolve con continuità (fino ad un altro eventuale istante critico).

Le grandezze di rete sono continue con derivate continue (classe C^{∞}) ma non ripetitive

→ si possono applicare i metodi dell'analisi differenziale classica.

Nell'analisi della rete si considerano:

- Ingressi (sorgenti) x(t) = grandezze impresse e(t) e j(t) dei generatori ideali indipendenti = termini noti
- Uscite (risposte) y(t) = grandezze v(t) e i(t) dei lati = incognite

L'analisi si sviluppa per t > 0, ovvero parte da $t = 0^+$, in cui sono noti i valori delle variabili di stato, ossia $y_s(0^+)$

Analisi in evoluzione continua

Assenza di andamenti prestabiliti \rightarrow i metodi sintetici (grandezze costanti, fasori, ...) non sono applicabili

→ Valgono le **leggi topologiche** (LKC e LKT) e **tipologiche** degli n-poli che compongono la rete.

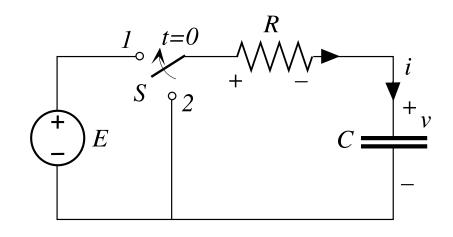
Esempi introduttivi

Iniziamo con esempi che costituiscono casi semplici ed importanti di reti in regime variabile aperiodico:

l'analisi della carica e della scarica di condensatore ed induttore.

I casi più semplici di reti in regime variabile, ma sono anche casi di importanza fondamentale

t < 0: S in 2 e circuito a destra a riposo (C nello stato zero): v=V=0t=0: S commuta in 1



Per t > 0 valgono le equazioni:

$$LKT: v_R + v = E$$

$$+R: \qquad v_R = Ri_R \qquad \longrightarrow \qquad Ri_R + v = E$$

$$+ LKC: i_R = i$$
 $\rightarrow Ri + v = E$

$$+ C: i = C dv / dt \rightarrow RC dv / dt + v = E$$

equazione differenziale ordinaria (edo) lineare di primo grado a coefficienti costanti e non omogenea

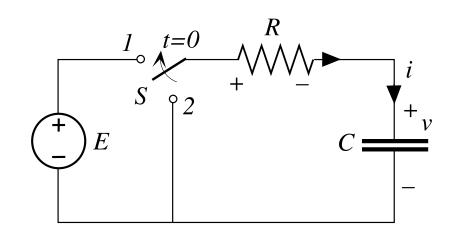
Integrale particolare:

costante, come il termine noto E:

$$v_p(t) = V_p$$

sostituendo nell'eq. diff.:

$$\rightarrow$$
 $v_p(t) = V_p = E$



Integrale dell'omogenea:

e.c.a.:
$$RC s + 1 = 0$$
 \rightarrow $s = -\frac{1}{RC}$ s^{-1}

si preferisce usare la **costante di tempo** $T = -\frac{1}{r} = RC$ s

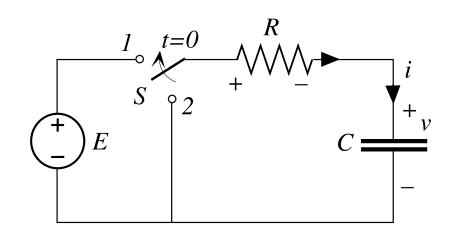
$$T = -\frac{1}{s} = RC \quad s$$

$$\rightarrow$$
 $v_o(t) = V_o e^{st} = V_o e^{-t/T}$

<u>Integrale completo</u>:

$$v(t) = v_p(t) + v_o(t)$$

$$v(t) = E + V_o e^{-t/T}$$



Costante di integrazione V_o :

il circuito non permette correnti impulsive in $t=0 \rightarrow \Delta v(0)=0$:

imponendo il valore iniziale: $v(0^+) = v(0^-) = V = 0$

$$\rightarrow 0 = v_p(0^+) + v_o(0^+) = E + V_o \qquad \rightarrow \qquad V_o = -E$$

Infine:
$$v(t) = E(1 - e^{-t/T})$$

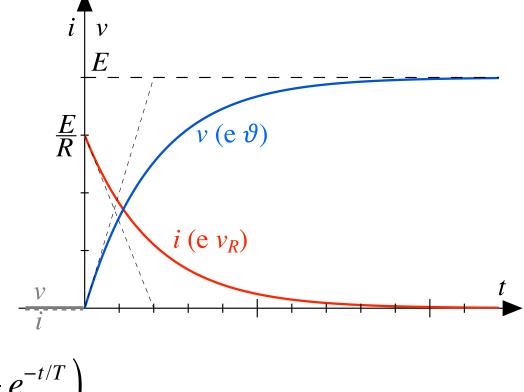
Da v(t) si ottengono le altre grandezze di rete:

$$i(t) = C\frac{dv}{dt} = \frac{E}{R}e^{-t/T}$$

e anche:

$$v_{R}(t) = Ri = E - v = E e^{-t/T}$$

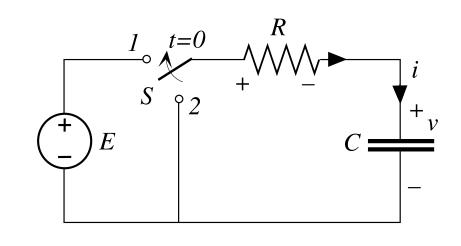
$$\vartheta(t) = C v = CE \left(1 - e^{-t/T} \right) = \Theta \left(1 - e^{-t/T} \right)$$



Tutte hanno andamenti esponenziali che dipendono da T

Se il condensatore è carico in $t=0^-$ (non nello stato zero): $v(0^-)=V\neq 0$ cambia solo il calcolo della costante di integrazione V_o in:

$$v(t) = v_p + v_o = E + V_o e^{-t/T}$$



il circuito non permette correnti impulsive in $t=0 \Rightarrow \Delta v(0)=0$: imponendo il valore iniziale: $v(0^+) = v(0^-) = V$

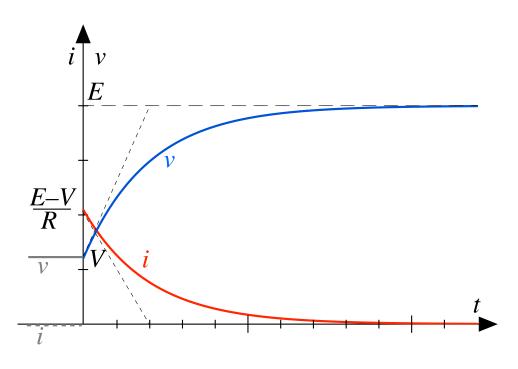
$$V = v_p(0^+) + v_o(0^+) = E + V_o$$
 \rightarrow $V_o = V - E$

Infine:
$$v(t) = E + (V - E)e^{-t/T}$$

Da v(t) si ottengono le altre grandezze di rete:

$$i(t) = C\frac{dv}{dt} = \frac{E - V}{R}e^{-t/T}$$

ecc.



v(t) e i(t) possono essere riscritte come:

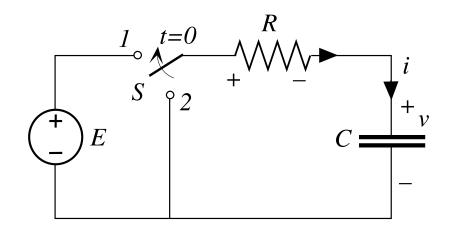
$$v(t) = E(1 - e^{-t/T}) + V e^{-t/T}$$
 $i(t) = \frac{E}{R} e^{-t/T} - \frac{V}{R} e^{-t/T}$

- i primi addendi (risposte forzate) dipendono dall'ingresso E
- i secondi (risposte libere) dipendono dallo stato iniziale V

t < 0: *S* in 1 e *C* carico

(non nello stato nullo): v=V=E

t = 0: S commuta in 2



Per t > 0 valgono le equazioni:

$$LKT: v_R + v = 0$$

$$+R: \qquad v_{R} = Ri_{R} \longrightarrow Ri_{R} + v = 0$$

$$+ LKC: i_{R} = i$$
 $\rightarrow Ri + v = 0$

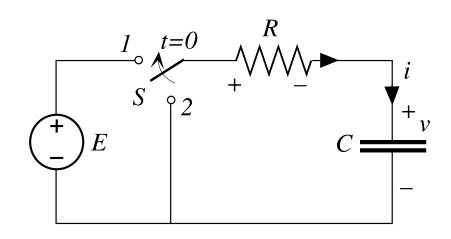
$$+ C: \qquad i = C \, dv \, / \, dt \rightarrow \qquad R \, C \, dv \, / \, dt + v = 0$$

equazione differenziale ordinaria lineare di primo grado a coefficienti costanti **omogenea**: tutto come nella carica, salvo che al posto dell'ingresso E c'è 0

Integrale particolare: non c'è perché l'e.d.o. è omogenea

Integrale dell'omogenea:

è uguale a quello nella carica e fornisce l'integrale completo



$$v(t) = v_o(t) = V_o e^{st} = V_o e^{-t/T}$$
 $T = -\frac{1}{s} = RC$ [s]

$$T = -\frac{1}{s} = RC \quad [s]$$

Costante di integrazione V_0 :

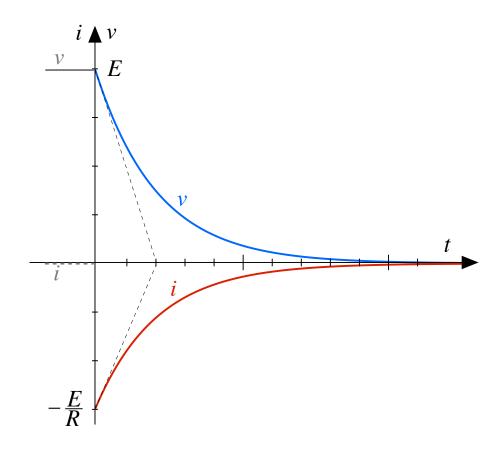
ancora $\Delta v(0)=0$; imponendo il valore iniziale: $v(0^+)=v(0^-)=V$

$$\rightarrow V = v(0^+) = V_o \rightarrow V_o = V \rightarrow v(t) = V e^{-t/T}$$

Da v(t) si ottengono le altre grandezze di rete:

$$i(t) = C\frac{dv}{dt} = -\frac{V}{R}e^{-t/T}$$

ecc.:



Bilanci energetici

Durante la carica da stato zero:

$$\mathcal{L}_{C} = W_{C} - 0 = \frac{1}{2}CE^{2} = \frac{1}{2}E\Theta \qquad (\Theta = CE)$$

$$\mathcal{L}_{g} = \int_{0}^{\infty} Eidt = E\int_{0}^{\infty} idt = E\Theta = 2W_{C}$$

$$\mathcal{L}_{R} = \int_{0}^{\infty} Ri^{2}dt = \mathcal{L}_{g} - W_{C} = \frac{1}{2}E\Theta$$

 \rightarrow II rendimento di carica è $W_C/\mathcal{L}_g = 0.5 = 50\%$

Durante la scarica tutta l'energia del condensatore è scaricata nel resistore:

$$\mathcal{L}_{C-erogato} = -\mathcal{L}_{C} = -(0 - W_{C}) = \frac{1}{2}CE^{2} = \frac{1}{2}E\Theta = \mathcal{L}_{R}$$

Dipendenza da R

Non dipendono da R:

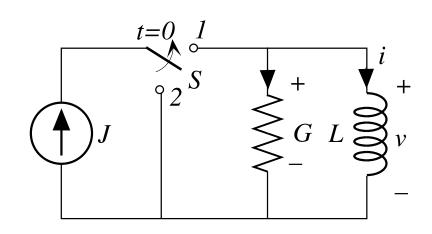
- la tensione di carica del condensatore $V\!\!=\!\!E$
- l'energia immagazzinata nel condensatore $W_C = CV^2/2$
- il lavoro erogato dal generatore
- il lavoro dissipato in *R*

Dipendono da R:

- la costante di tempo, T=RC e quindi la velocità di carica/scarica
- il valore massimo della corrente I=E/R

Per $R \rightarrow 0$ si ottengono carica e scarica istantanee in t=0 con corrente impulsiva e tensione discontinua (capitolo 19)

t < 0: S in 2 e circuito a destra a riposo (L nello stato zero): i=I=0t=0: S commuta in 1



Per t > 0 valgono le equazioni:

$$LKC: i_R + i = J$$

$$+R:$$
 $i_R = Gv_R$ \rightarrow $Gv_R + i = J$

$$+ LKT: v_R = v$$
 $\rightarrow Gv + i = J$

$$+L:$$
 $v = L di / dt \rightarrow GL di / dt + i = J$

equazione differenziale ordinaria lineare di primo grado a coefficienti costanti e non omogenea

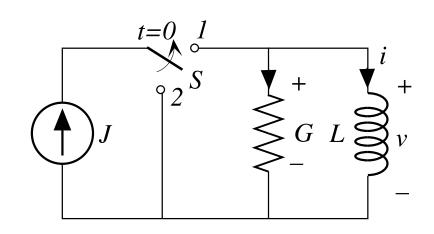
Integrale particolare:

costante, come il termine noto E:

$$_{ip}\left(t\right) =I_{p}$$

sostituendo nell'eq. diff.:

$$\rightarrow$$
 $i_p(t) = I_p = J$



Integrale dell'omogenea:

e.c.a.:
$$GL s + 1 = 0$$
 \rightarrow $s = -\frac{1}{GL} s^{-1}$

si preferisce usare la **costante di tempo** $T = -\frac{1}{-} = GL$ s

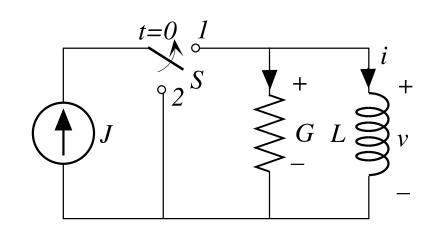
$$T = -\frac{1}{s} = GL$$
 s

$$\rightarrow$$
 $i_o(t) = I_o e^{st} = I_o e^{-t/T}$

Integrale completo:

$$v_i(t) = i_p(t) + i_o(t)$$

$$i(t) = J + I_o e^{-t/T}$$



Costante di integrazione *I*_o:

il circuito non permette tensioni impulsive in $t=0 \rightarrow \Delta i(0)=0$:

imponendo il valore iniziale: $i(0^+) = i(0^-) = I = 0$

$$\rightarrow 0 = i_p(0^+) + i_o(0^+) = J + I_o \rightarrow I_o = -J$$

Infine:
$$i(t) = J(1 - e^{-t/T})$$

Da i(t) si ottengono le altre grandezze di rete:

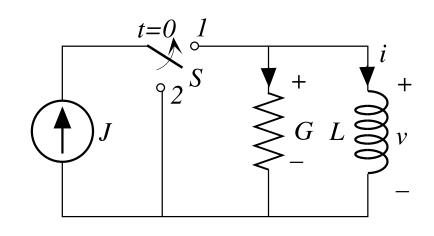
$$v(t) = L\frac{di}{dt} = \frac{J}{G}e^{-t/T}$$

e anche: $i_R(t) = Gv = J - i = Je^{-t/T}$ $\lambda(t) = Li = LJ\left(1 - e^{-t/T}\right) = \Lambda\left(1 - e^{-t/T}\right)$

Tutte hanno andamenti esponenziali che dipendono da T

Se l'induttore è carico in $t=0^-$ (non nello stato zero): $i(0^-)=I\neq 0$ cambia solo il calcolo della costante di integrazione I_o in:

$$i(t) = i_p + i_o = J + I_o e^{-t/T}$$



il circuito non permette tensioni impulsive in $t=0 \Rightarrow \Delta i(0)=0$: imponendo il valore iniziale: $i(0^+)=i(0^-)=I$

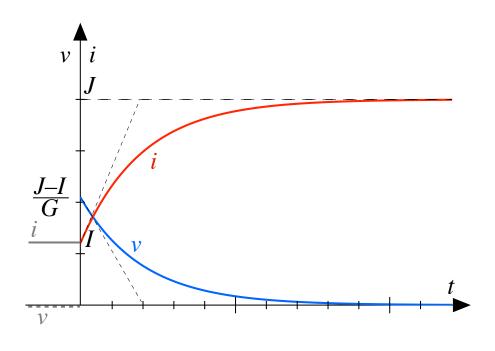
$$I = i_p(0^+) + i_o(0^+) = J + I_o$$
 \rightarrow $I_o = I - J$

Infine:
$$i(t) = J + (I - J)e^{-t/T}$$

Da i(t) si ottengono le altre grandezze di rete:

$$v(t) = L\frac{di}{dt} = \frac{J - I}{G}e^{-t/T}$$

ecc.



i(t) e v(t) possono essere riscritte come:

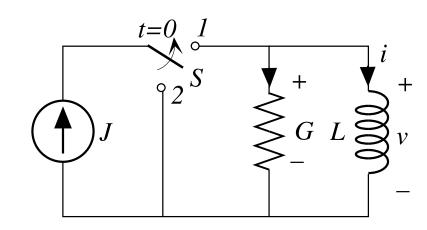
$$i(t) = J(1 - e^{-t/T}) + I e^{-t/T}$$
 $v(t) = \frac{J}{G} e^{-t/T} - \frac{I}{G} e^{-t/T}$

- i primi addendi (risposte forzate) dipendono dall'ingresso E
- i secondi (risposte libere) dipendono dallo stato iniziale V

t < 0: *S* in 1 e *L* carico

(non nello stato nullo): i=I=J

t = 0: S commuta in 2



Per t > 0 valgono le equazioni:

$$LKC: i_R + i = 0$$

$$+R:$$
 $i_R=Gv_R$ \rightarrow $Gv_R+i=0$

$$+ LKT: v_R = v$$
 $\rightarrow Gv + i = 0$

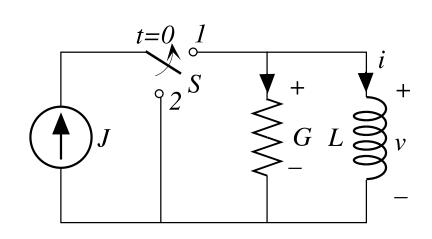
$$+L: \qquad v = L di / dt \quad \rightarrow \quad G L di / dt + i = 0$$

equazione differenziale ordinaria lineare di primo grado a coefficienti costanti **omogenea**: tutto come nella carica, salvo che al posto dell'ingresso J c'è 0

<u>Integrale particolare:</u> non c'è perché l'e.d.o. è omogenea

Integrale dell'omogenea:

è uguale a quello nella carica e fornisce l'integrale completo



$$i(t) = i_o(t) = I_o e^{st} = I_o e^{-t/T}$$
 $T = -\frac{1}{s} = LG$ [s]

Costante di integrazione I_0 :

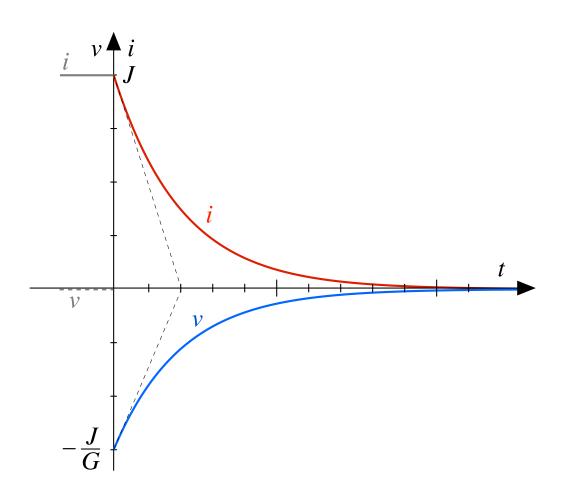
ancora $\Delta i(0)=0$; imponendo il valore iniziale: $i(0^+)=i(0^-)=I$

$$\rightarrow I = i(0^+) = I_o \rightarrow I_o = I \rightarrow i(t) = I e^{-t/T}$$

Da i(t) si ottengono le altre grandezze di rete:

$$v(t) = L\frac{di}{dt} = -\frac{I}{G}e^{-t/T}$$

ecc.:



Bilanci energetici

Durante la carica da stato zero:

$$\mathcal{L}_{L} = W_{L} - 0 = \frac{1}{2}LJ^{2} = \frac{1}{2}J\Lambda \qquad (\Lambda = LJ)$$

$$\mathcal{L}_{g} = \int_{0}^{\infty} J v dt = J \int_{0}^{\infty} v dt = J\Lambda = 2 W_{L}$$

$$\mathcal{L}_{R} = \int_{0}^{\infty} G v^{2} dt = \mathcal{L}_{g} - W_{L} = \frac{1}{2}J\Lambda$$

 \rightarrow II rendimento di carica è $W_L/\mathcal{L}_{\rm g}$ = 0,5 = 50%

Durante la scarica tutta l'energia dell'induttore è scaricata nel resistore:

$$\mathcal{L}_{L-erogato} = -\mathcal{L}_{L} = -(0 - W_{L}) = \frac{1}{2}LJ^{2} = \frac{1}{2}J\Lambda = \mathcal{L}_{R}$$

Dipendenza da R

Non dipendono da R:

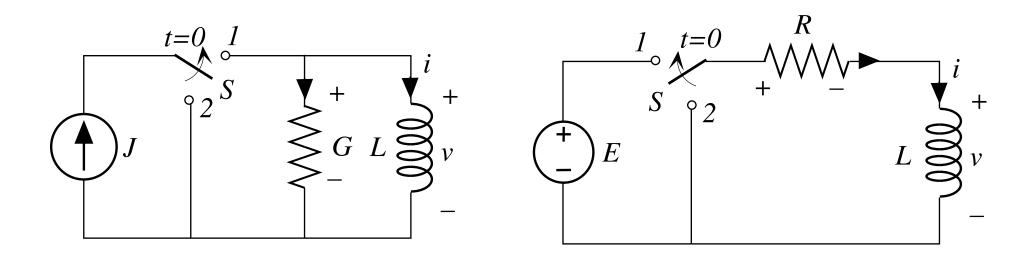
- la corrente di carica dell'induttore I=J
- l'energia immagazzinata nell'induttore $W_L = L I^2/2$
- il lavoro erogato dal generatore
- il lavoro dissipato in *R*

Dipendono da R:

- la costante di tempo, T=LG e quindi la velocità di carica/scarica
- il valore massimo della tensione V=J/G

Per $G \rightarrow 0$ si ottengono carica e scarica istantanee in t=0 contensione impulsiva e corrente discontinua (capitolo 19)

Circuiti equivalenti di carica/scarica



In base alle usuali equivalenze GAC \leftrightarrow GAT con E = J/G e R = 1/G > 0 per t > 0 nel circuito di destra la tensione e la corrente dell' induttore si presentano gli stessi andamenti del circuito di sinistra qui esaminato (ma non gli stessi bilanci energetici)

Formulazione generale

Come visto negli esempi esaminati

Si usano le equazioni generali tipologiche e topologiche di rete (n.b.: per gli elementi dinamici si usano solo le equazioni differenziali)

• • •

Si elaborano tali equazioni in modo da ricavare un'equazione "separata" in una sola uscita y_h

$$A i = 0$$

$$B v = 0$$

$$v - R i = 0$$

$$v - R i = 0$$

$$C \frac{dv}{dt} - i = 0$$

$$v - L \frac{di}{dt} = 0$$

$$v - L \frac{di}{dt} = 0$$

$$v = e(t)$$

$$i = j(t)$$

Equazione differenziale ingresso-uscita

• Se l'uscita y_h dipende da un solo ingresso x l'equazione è:

$$\sum_{i=0}^{n} a_{i} \frac{d^{i} y_{h}}{dt^{i}} = \sum_{i=0}^{m} b_{i} \frac{d^{i} x}{dt^{i}}$$

ossia:

$$a_n \frac{d^n y_h}{dt^n} + \dots + a_1 \frac{dy_h}{dt} + a_0 y_h = b_m \frac{d^m x}{dt^m} + \dots + b_1 \frac{dx}{dt} + b_0 x$$

• Se l'uscita y_h dipende da un più ingressi x_k l'equazione è:

$$\sum_{i=0}^{n} a_{i} \frac{d^{i} y_{h}}{dt^{i}} = \sum_{k=1}^{q} \sum_{i=0}^{m_{k}} b_{ki} \frac{d^{i} x_{k}}{dt^{i}}$$

• • •

Osservazioni

- 1) L'uscita y_h è l'incognita a primo membro; i coefficienti a_i , b_i , b_{ki} sono funzioni della **rete inerte** (R, R, C, L, L e loro connessioni A, B)
- 2) I secondi membri sono termini noti f_h : funzioni degli ingressi $x_k(t)$ note a priori
- 3) Per costruzione il grado n è sempre minore o uguale al numero p di variabili di stato presenti nella rete

Nell'integrare l'equazione bisogna tener conto del valore iniziale delle variabili di stato contenute in y_s , per cui l'e.d.o. si può scrivere sinteticamente come:

$$\mathcal{L}_h y_h = f_h \qquad h = 1, \dots 2\ell \qquad \mathbf{y}_S(0^+) \neq \mathbf{0}$$

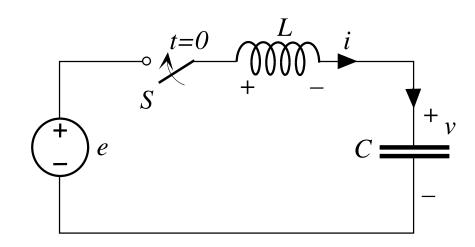
Oscillatore LC-1

 $e(t)=E_{M}sen\omega t$

t<0: *S* aperto e circuito a riposo

t=0: S chiude

Equazioni per t>0:



$$LKT: v_L + v = e$$

$$+L:$$
 $v_L = L di / dt \rightarrow L di / dt + v = e$

$$+ LKC: i_C = i$$
 $\rightarrow Ldi_C / dt + v = e$

$$+ C:$$
 $i_C = C dv / dt \rightarrow LC d^2v / dt^2 + v = e$

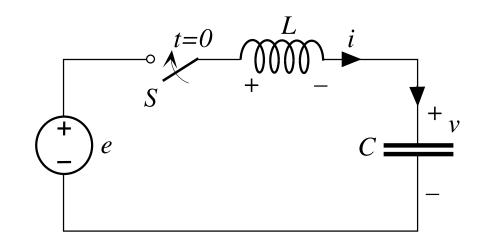
e.d.o. lineare di secondo grado a coefficienti costanti

Oscillatore LC-2

$$e(t)=E_{M}sen\omega t$$

t<0: *S* aperto e circuito a riposo

t=0: S chiude



Equazioni per t>0:

$$LKC: i = i_C$$

$$+ C: i_C = C dv / dt \rightarrow i = C dv / dt$$

$$+LKT: \quad v = e - v_L \qquad \rightarrow \qquad i = C d(e - v_L) / dt$$

$$+L:$$
 $v_I = L di / dt \rightarrow i = C d(e - L di / dt) / dt$

$$\rightarrow LC d^2i/dt^2 + i = C de/dt$$

e.d.o. lineare di secondo grado a coefficienti costanti

Oscillatore LC-3

$$e(t)=E_{M}sen\omega t$$

t<0: *S* aperto e circuito a riposo

t=0: S chiude

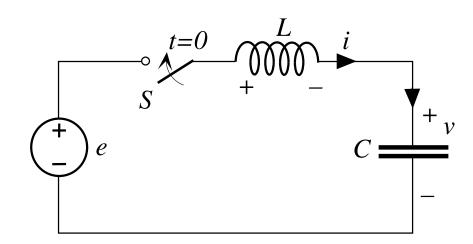
2 e.d.o. simili:

$$\frac{1}{\omega_o^2} \frac{d^2 v}{dt^2} + v = e$$

$$\frac{1}{\omega^2} \frac{d^2 i}{dt^2} + i = C \frac{de}{dt}$$

$$\omega_o = -\frac{1}{\sqrt{2}} \frac{d^2 i}{dt^2} + i = C \frac{de}{dt}$$

Primi membri uguali e termini noti diversi



Integrazione dell'equazione differenziale

La e.d.o.:

$$\sum_{i=0}^{n} a_{i} \frac{d^{i} y}{dt^{i}} = \sum_{k=1}^{q} \sum_{i=0}^{m_{k}} b_{ki} \frac{d^{i} x_{k}}{dt^{i}}$$

si integra calcolando:

- integrale particolare y_p
- integrale dell'equazione omogenea associata y_o

$$y(t) = y_p + y_o$$

 y_o comprende le costanti di integrazione che vanno scelte in modo che le variabili di stato della rete evolvano partendo dai valori iniziali contenuti nel vettore di stato, $y_s(0^+)$:

$$\mathcal{L} y = f(x) \qquad \qquad \mathbf{y}_{s}(0^{+}) \neq \mathbf{0}$$

Risposta forzata

Se $y_s(0^+)=0$, l'e.d.o. si pone come

$$\mathcal{L}y = f \qquad \mathbf{y}_{S}(0^{+}) = \mathbf{0}$$

La soluzione si chiama risposta forzata (o risposta da stato nullo)

si può calcolare come somma dei suoi integrali particolare e dell'omogenea:

$$y_f(t) = y_{fp} + y_{fo}$$

ove:
$$y_{fp} = y_p$$
 e $y_{fo} \neq y_o$

perché y_o dipende dalla condizioni iniziali e y_p no

Risposta libera

Se $x_k = 0$ per $\forall k$, l'e.d.o. è:

$$\mathcal{L}y = 0 \qquad \mathbf{y}_{s}(0^{+}) \neq \mathbf{0}$$

La soluzione si chiama **risposta libera** (o **risposta con ingressi nulli**) essendo omogenea ha ingresso particolare nullo:

$$y_l(t) = y_{lo}$$

ove: $y_{lo} \neq y_o$

perché y_o in condizioni generiche (ingressi non nulli) dipende anche da tali ingressi

Valori iniziali

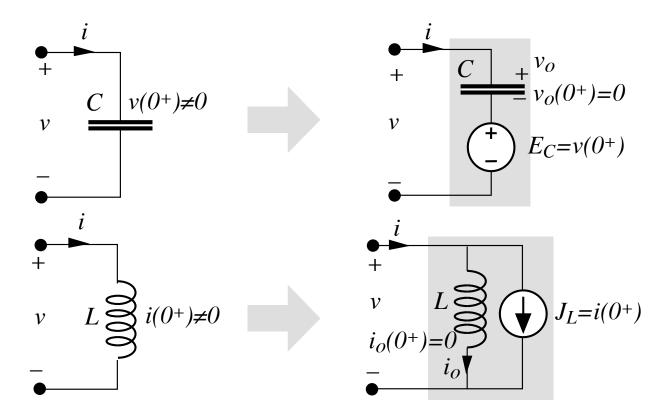
Equazioni di condensatori ed induttori

$$v(t) = v(0^+) + \frac{1}{C} \int_{0^+}^t i(t') dt'$$

$$i(t) = i(0^+) + \frac{1}{L} \int_{0^+}^t v(t') dt'$$

Se
$$v(0^+)\neq 0$$
 e $i(0^+)\neq 0$

→ queste sono non lineari e pregiudicano la linearità del problema



- \rightarrow si può ovviare (concettualmente) con gli schemi linearizzati visti a suo tempo, ove compaiono ingressi costanti fittizi X_F (E_C e J_L).
- $\rightarrow v(0^+)\neq 0$ e $i(0^+)\neq 0$ sono riconducibili a ingressi costanti

Risposta generica

Se $x \neq 0$ e $y_s(0^+) \neq 0$:

$$\mathcal{L}y = f \qquad \mathbf{y}_{S}(0^{+}) \neq \mathbf{0}$$

schemi linearizzati $y_s(0^+) \rightarrow X_F$

- → rete linearizzata → sovrapposizione degli effetti
- prima azione: $x \neq 0$ e $X_F = 0 \Rightarrow$ risposta forzata
- seconda azione: x = 0 e $X_F \neq 0 \Rightarrow$ risposta libera

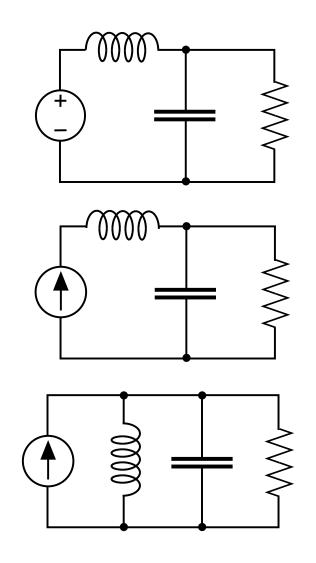
$$\rightarrow$$
 $y(t) = y_f + y_l$

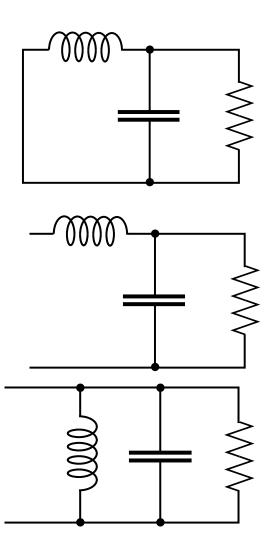
$$\rightarrow y_p + y_o = (y_{fp} + y_{fo}) + (y_{lo})$$

$$y_p = y_{fp}$$
$$y_o = y_{fo} + y_{lo}$$

Azzeramento degli ingressi

Effetto sulla rete in risposta libera





Integrale particolare -1

È applicabile la sovrapposizione degli effetti -> consideriamo un solo ingresso:

$$\sum_{i=0}^{n} a_{i} \frac{d^{i} y}{dt^{i}} = \sum_{k=1}^{q} \sum_{i=0}^{m_{k}} b_{ki} \frac{d^{i} x_{k}}{dt^{i}} \rightarrow \sum_{i=0}^{n} a_{i} \frac{d^{i} y}{dt^{i}} = \sum_{i=0}^{m} b_{i} \frac{d^{i} x}{dt^{i}}$$

x(t) può avere qualsiasi andamento.

Il calcolo è più facile se x(t) ha andamento canonico:

- costante (gradino)
- sinusoidale
- rampa

Integrale particolare -2

Ingresso costante

Si cerca un integrale particolare costante $x(t) = X \rightarrow y_p(t) = Y_p$

$$a_o Y_p = b_o X$$
 \Rightarrow $Y_p = \frac{b_o}{a_o} X = H X$

è la soluzione che si avrebbe in regime stazionario (= soluzione unica della rete che verifica le equazione di rete con andamenti costanti)*.

 \rightarrow Y_p si può determinare con i metodi di analisi delle reti in regime stazionario. H è uno dei coefficienti di rete del regime stazionario.

Se a_0 =0 non esiste la soluzione costante (la rete è singolare in regime stazionario). Esiste integrale particolare a rampa $y_p(t) = K_o t$

*n.b.: l'analisi in regime stazionario vista a suo tempo fornisce la soluzione rapida dell'e.d.o. (valida in ogni condizione di funzionamento) nel caso particolare di grandezze tutte costanti.

Integrale particolare -3

Ingresso sinusoidale

Si cerca un integrale particolare sinusoidale isofrequenziale con l'ingresso

$$x(t) = X_M sen(\omega t + \chi)$$
 \rightarrow $y_p(t) = Y_{pM} sen(\omega t + \gamma_p)$

è la soluzione che si avrebbe in regime sinusoidale (= soluzione unica della rete che verifica le equazione di rete con andamenti sinusoidali).

 \rightarrow y_p si può determinare con i metodi di analisi delle reti in regime sinusoidale (metodo fasoriale). Applicando Steinmetz alla e.d.o.:

$$\sum_{i=0}^{n} (j\omega)^{i} a_{i} \overline{Y}_{p} = \sum_{i=0}^{m} (j\omega)^{i} b_{i} \overline{X}_{p} \qquad \rightarrow \qquad \overline{Y}_{p} = \frac{\sum_{i=0}^{m} (j\omega)^{i} b_{i}}{\sum_{i=0}^{n} (j\omega)^{i} a_{i}} \overline{X} = \dot{H}(j\omega) \overline{X}$$

 $\dot{H}(j\omega)$ è uno dei coefficienti di rete simbolici.

Se il denominatore è nullo non esiste l'integrale particolare sinusoidale (la rete è singolare in regime sinusoidale). Esiste un integrale particolare:

$$y_p(t) = t K_o sen(\omega t + \gamma_p)$$

Oscillatore LC con ingresso costante

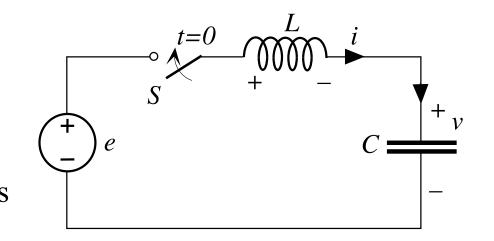
$$e(t) = E = 360 \text{ V}$$

 $L = 100 \text{ mH}, C = 40 \mu\text{F}$

$$\frac{1}{\omega_o^2} \frac{d^2 v}{dt^2} + v = e$$

$$\frac{1}{\omega_o^2} \frac{d^2 i}{dt^2} + i = C \frac{de}{dt}$$

$$\omega_o = \frac{1}{\sqrt{LC}} = 500 \text{ rad/s}$$



Integrali particolari costanti

Condensatore: $v_p(t)=V_p$ sostituendo nella e.d.o.: $V_p=E$

Induttore: $i_p(t)=I_p$ sostituendo nella e.d.o.: $I_p=0$

Sono le uscite che la rete avrebbe in regime stazionario

Oscillatore LC con ingresso sonusoidale

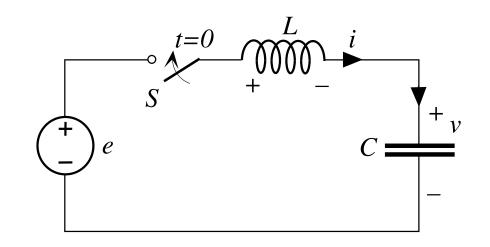
$$e(t)=E_M sen \omega t = 360 sen 100t \text{ V}$$

 $L=100 \text{ mH}, C=40 \mu\text{F}$

$$\frac{1}{\omega_o^2} \frac{d^2 v}{dt^2} + v = e$$

$$\frac{1}{\omega_o^2} \frac{d^2 i}{dt^2} + i = C \frac{de}{dt}$$

$$\omega_o = \frac{1}{\sqrt{LC}} = 500 \text{ rad/s}$$



Integrali particolari sinusoidali :

Condensatore: $v_p = V_{pM} sen(100t + \alpha_p)$

sostituendo nella e.d.o.: $V_{pM} = 375$ $\alpha_p = 0$

Induttore: $i_p = I_{pM} sen(100t + \beta_p)$

sostituendo nella e.d.o.: $I_{pM} = 1.5$ $\beta_p = \pi/2$

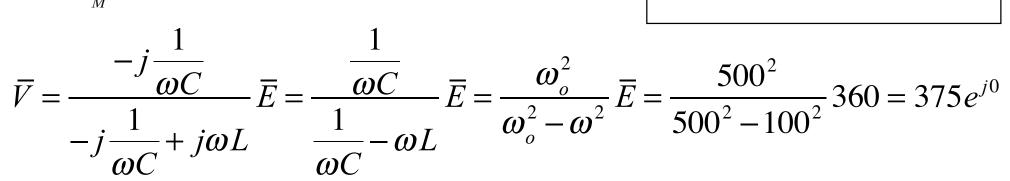
Oscillatore LC con ingresso sonusoidale

$$e(t) = E_M sen \omega t = 360 sen 100t \text{ V}$$

 $L = 100 \text{ mH}, C = 40 \mu\text{F}$

Analisi fasoriale:

$$\overline{E} = E_{\scriptscriptstyle M} e^{j0} = 360$$



$$\overline{I} = \frac{\overline{E}}{-j\frac{1}{\omega C} + j\omega L} = j\frac{\overline{E}}{\frac{1}{\omega C} - \omega L} = \frac{j\omega\omega_o}{\omega_o^2 - \omega^2} \sqrt{\frac{C}{L}} \overline{E} = \frac{100500}{500^2 - 100^2} \frac{360e^{j\frac{\pi}{2}}}{50} = 1,5e^{j\frac{\pi}{2}}$$

n.b.: se $\omega = \omega_o$ la rete è singolare e le soluzioni sinusoidali non esistono

Equazione differenziale omogenea associata:

si ottiene azzerando il termine noto f nella e.d.o. completa:

$$\sum_{i=0}^{n} a_i \frac{d^i y_h}{dt^i} = 0$$

Coincide con la e.d.o. della rete in risposta libera (con generatori spenti: $e(t) \rightarrow 0$ –c.c.–, $j(t) \rightarrow 0$ –c.a.–)

Equazione caratteristica associata ottenuta sostituendo la derivata i-esima dell'uscita con la potenza i-esima della variabile complessa s

$$\sum_{i=0}^{n} a_i s^i = 0$$

Teorema di d'Alambert

$$\sum_{i=0}^{n} a_i s^i = 0$$

L'equazione algebrica a coefficienti reali di grado *n* ha *n* radici in campo complesso:

→ Radici dell'equazione caratteristica

• reali $s_i = \sigma_i$ $i = 1 \dots n_r$

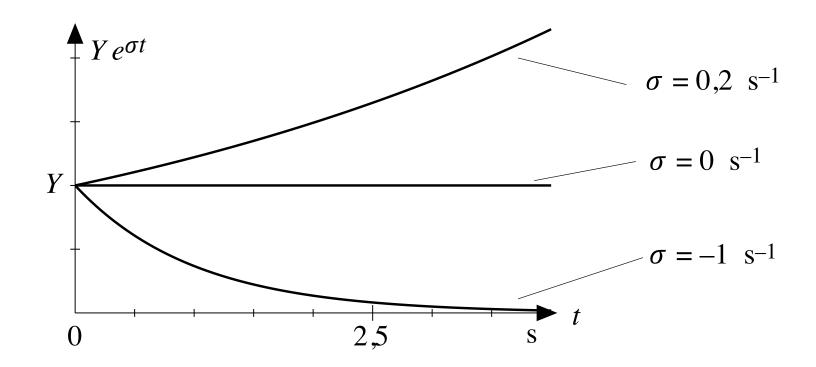
• complesse $s_i = \sigma_i + j\omega_i$ $i = 1 \dots n_c$ $n_r + 2 n_c = n$

- le complesse sono sempre conjugate a 2 a 2: $s_i = \sigma_i \pm j\omega_i$
- le parti reali possono essere nulle, $\sigma_i = 0$: $s_i = 0$ e $s_i = 0 \pm j\omega_i$
- se $\sigma_i \neq 0$, le radici possono essere multiple (in n_r e n_c si contano le molteplicità).

Radici reali singole

Da $s_i = \sigma_i$ origina un modo naturale esponenziale (monotono) con una costante di integrazione Y_i :

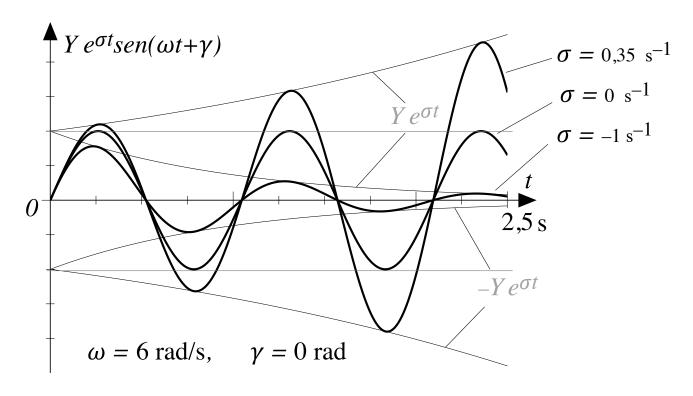
 $y_i(t) = Y_i e^{\sigma_i t}$



Coppie di radici complesse singole

Da $s_i = \sigma_i + j\omega_i$ e $s_i = \sigma_i - j\omega_i$ origina un modo naturale pseudoarmonico (oscillante) con due costanti di integrazione Y_{si} e Y_{ci} (o Y_i e γ_i):

$$y_i(t) = e^{\sigma_i t} (Y_{si} sen\omega_i t + Y_{ci} cos\omega_i t) = Y_i e^{\sigma_i t} sen(\omega_i t + \gamma_i)$$



Radici reali e complesse multiple

Molteplicità 2 → due modi rispettivamente:

$$\begin{cases} y_{i1}(t) = Y_i e^{\sigma_i t} \\ y_{i2}(t) = K_{i1} t e^{\sigma_i t} \end{cases}$$

$$\begin{cases} y_{i1}(t) = e^{\sigma_i t} (Y_{si} sen\omega_i t + Y_{ci} cos\omega_i t) \\ y_{i2}(t) = t e^{\sigma_i t} (K_{si1} sen\omega_i t + K_{ci1} cos\omega_i t) \end{cases}$$

Per molteplicità superiori si aggiungono modi con potenze crescenti del tempo t

Integrale complessivo

È la somma dei modi normali.

Se tutte le radici sono singole:

$$y_o(t) = \sum_{i=1}^{n_r} Y_i e^{\sigma_i t} + \sum_{i=1}^{n_c} Y_i e^{\sigma_i t} sen(\omega_i t + \gamma_i)$$

Le radici $s_i = \sigma_i + j\omega_i$ appaiono come **pulsazioni generalizzate naturali o proprie.** Dipendono da R, C, L, R, L, A, B (rete inerte) e non dagli ingressi.

Presenta $n = n_r + 2 n_c$ costanti di integrazioni.

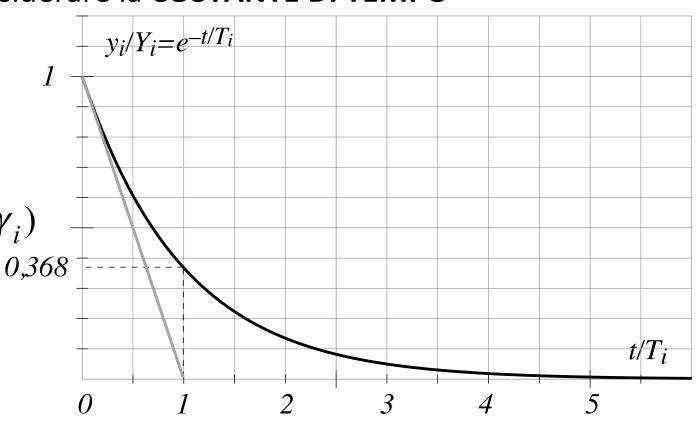
Se σ_i <0 si preferisce considerare la **COSTANTE DI TEMPO**

$$T_i = -\frac{1}{\sigma_i}$$
 [s]

$$y_i(t) = Y_i e^{-t/T_i}$$

$$y_i(t) = Y_i e^{-t/T_i} sen(\omega_i t + \gamma_i)$$

dopo un tempo di $5T_i$ il valore residuo è 0,7% \rightarrow il modo è praticamente estinto



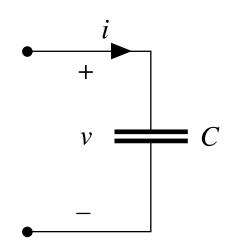
t/Ti	0,001	0,01	0,1	1	2	3	4	5	10
yi/Yi	0,999	0,990	0,905	0,368	0,135	0,050	0,018	0,007	0,0005

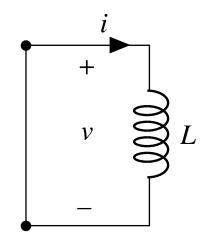
Reti fondamentali in evoluzione libera

Sono le reti composte da singoli bipoli ideali R-L-C

- sono gli esempi più elementari
- ed hanno importanza primaria
- ne identifichiamo la equazione algebrica,
- le pulsazioni naturali
- i modi naturali

Reti del primo ordine conservative





Condensatore aperto

i=0 e $i=C \frac{dv}{dt} \rightarrow C \frac{dv}{dt}=0$

$$Cs = 0 \rightarrow s = 0$$

radice nulla

$$v_o(t) = V e^{0t} = V$$

modo costante

Induttore cortocircuito

 $v=0 \text{ e } v=L \frac{di}{dt} \rightarrow L \frac{di}{dt}=0$

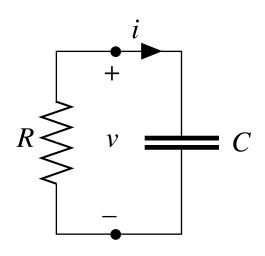
$$Ls = 0 \rightarrow s = 0$$

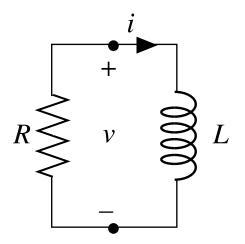
radice nulla

$$i_o(t) = I e^{0t} = I$$

modo costante

Reti del primo ordine dissipative





Anello RC

$$RC dv/dt + v = 0 \rightarrow RCs + 1 = 0$$

$$T = -1/s = RC \quad [s]$$

radice reale negativa

$$v_o(t) = V e^{-t/T}$$

modo esponenziale monotono

Anello RL

$$GL di/dt + i = 0 \rightarrow GLs + 1 = 0$$

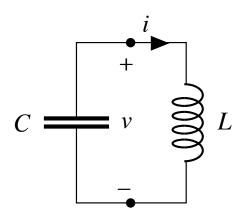
$$T = -1/s = GL = L/R$$
 [s]

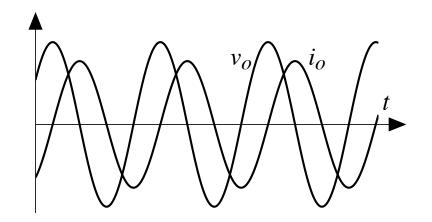
radice reale negativa

$$i_o(t) = I e^{-t/T}$$

modo esponenziale monotono

Rete del secondo ordine conservativa





Anello (oscillatore) LC

$$\frac{1}{\omega_o^2} \frac{d^2 v}{dt^2} + v = 0$$

$$\frac{1}{\omega_o^2} \frac{d^2 i}{dt^2} + i = 0$$

$$\omega_o = \frac{1}{\sqrt{LC}}$$

$$s^2 + \omega_o^2 = 0 \rightarrow s_{1,2} = \pm j\omega_o$$
 radici immaginarie coniugate $v(t) = V_{oc}\cos\omega_o t + V_{oc}\sin\omega_o t$ $i(t) = I_{oc}\cos\omega_o t + I_{oc}\sin\omega_o t$ modi armonici permanenti

Anello RLC serie

Ricerca e.d.o. per $i = i_C = i_R$ (LKC)

LKT:
$$v + v_L + v_R = 0$$

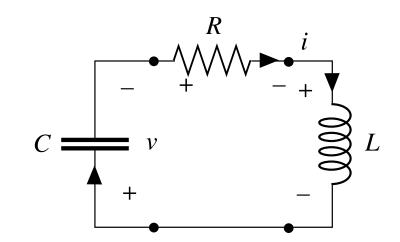
 $v_L = L \frac{di}{dt} + v_R = R i$

$$\rightarrow$$
 $L di/dt + v + R i = 0$

$$\rightarrow \frac{d^2 i}{dt^2} + \frac{R}{L} \frac{di}{dt} + \frac{1}{CL} i = 0$$

parametri caratteristici
$$\alpha \triangleq \frac{R}{2L}$$
 $\omega_o \triangleq \frac{1}{\sqrt{LC}}$ $R_c \triangleq 2\sqrt{\frac{L}{C}}$ $\xi \triangleq \frac{R}{R_c} = \frac{\alpha}{\omega_o}$

 α [s⁻¹] = costante di smorzamento; ω_o [s⁻¹] = pulsazione naturale non smorzata; R_c [Ω] = resistenza critica; ξ [\emptyset] = fattore di smorzamento



Anello RLC serie

e.d.o. per
$$i$$

$$\frac{d^2 i}{dt^2} + \frac{R}{L} \frac{di}{dt} + \frac{1}{CL} i = 0$$

$$\frac{d^2 i}{dt^2} + 2\alpha \frac{d i}{dt} + \omega_o^2 i = 0$$

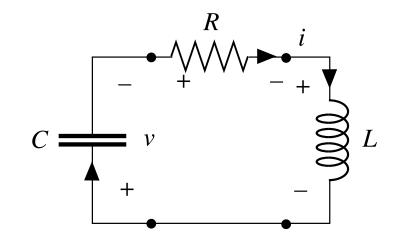
e.a.a. e sue radici:
$$s^2 + 2\alpha s + \omega_o^2 = 0$$

discriminante: $\Delta = \alpha^2 - \omega_0^2 = \alpha^2 (1 - 1/\xi^2) \leq 0$

A)
$$\Delta > 0$$
 $(R > R_c \ \xi > 1) \Rightarrow s_1, s_s = -\alpha \pm \alpha_s$

B)
$$\Delta = 0$$
 ($R = R_c$ $\xi = 1$) \Rightarrow $s_1, s_s = -\alpha$

C)
$$\Delta < 0$$
 ($R < R_c$ $\xi < 1$) $\Rightarrow s_1, s_s = -\alpha \pm j\omega_s$ $\omega_s = \sqrt{\omega_o^2 - \alpha^2} < \omega_o$



$$s_1, s_2 = -\alpha \pm \sqrt{\alpha^2 - \omega_o^2}$$

$$\alpha_s = \sqrt{\alpha^2 - \omega_o^2} < \alpha$$

$$\omega_{s} = \sqrt{\omega_{o}^{2} - \alpha^{2}} < \omega_{o}$$

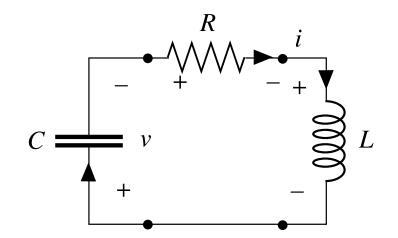
A) Anello *RLC* serie sovrasmorzato (ξ >1)

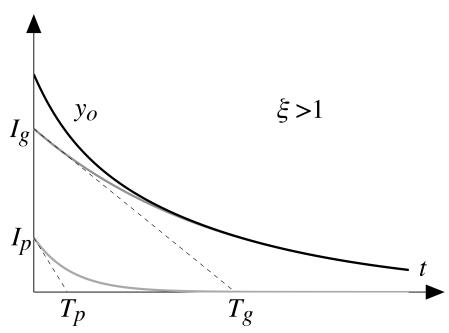
$$\Delta > 0$$
 $s_{1,2} = -\alpha \pm \alpha_s$

radici reali distinte negative

$$R > R_c \implies \begin{cases} T_g = -\frac{1}{s_1} = \frac{1}{\alpha - \alpha_s} \\ T_p = -\frac{1}{s_2} = \frac{1}{\alpha + \alpha_s} \end{cases}$$

$$i_o(t) = I_g e^{-\frac{t}{T_g}} + I_p e^{-\frac{t}{T_p}}$$





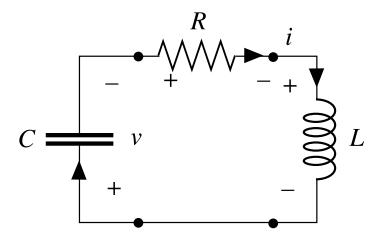
B) Anello *RLC* serie criticamente smorzato (ξ =1)

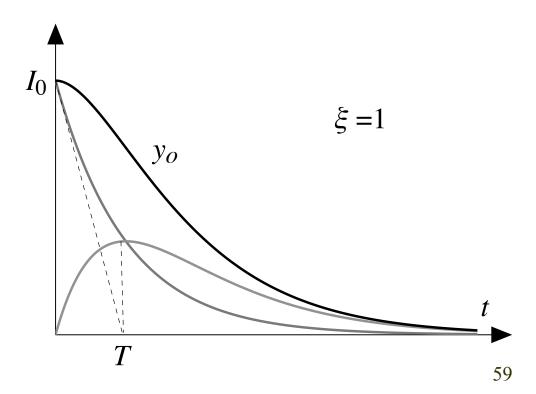
$$\Delta = 0$$
 $s_{1,2} = -\alpha$

radici reali negative coincidenti (radice doppia)

$$R = R_c \implies T = -\frac{1}{s_{1,2}} = \frac{1}{\alpha}$$

$$i_{o}(t) = I_{o} e^{-\frac{t}{T}} + K_{o} t e^{-\frac{t}{T}}$$



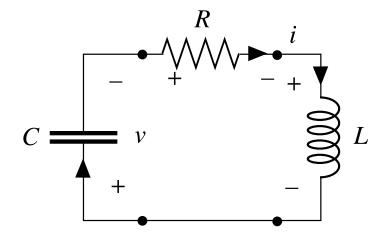


C) Anello *RLC* serie criticamente smorzato (ξ <1)

$$\Delta < 0$$
 $s_{1,2} = -\alpha \pm j\omega_s$

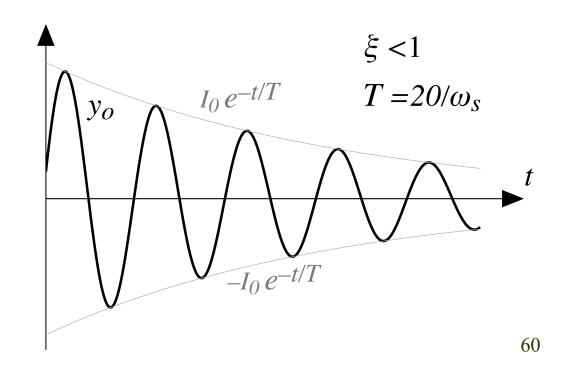
radici complesse coniugate

$$R < R_c \implies s_{1,2} = -\alpha \pm j\omega_s = -\frac{1}{T} \pm j\omega_s$$



$$i_o(t) = I_o e^{-\frac{t}{T}} sen(\omega_s t + \beta)$$

Per $R \rightarrow 0$ tende all'oscillatore LC



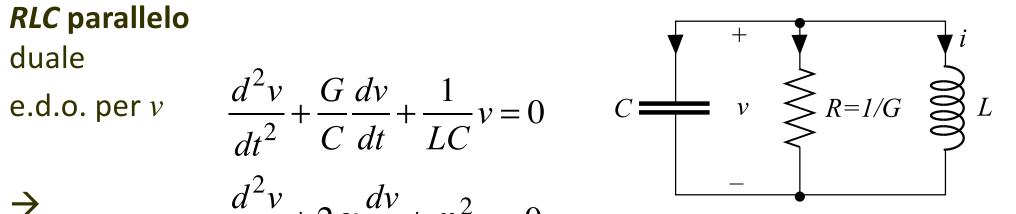
RLC parallelo

duale

e.d.o. per
$$v$$

$$\frac{d^2v}{dt^2} + \frac{G}{C}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

$$\frac{d^2v}{dt^2} + 2\alpha \frac{dv}{dt} + \omega_o^2 v = 0$$

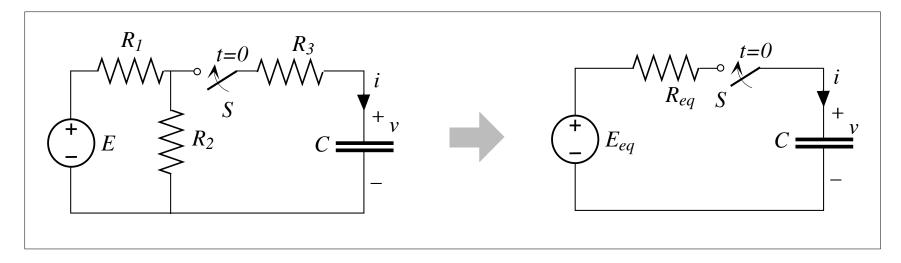


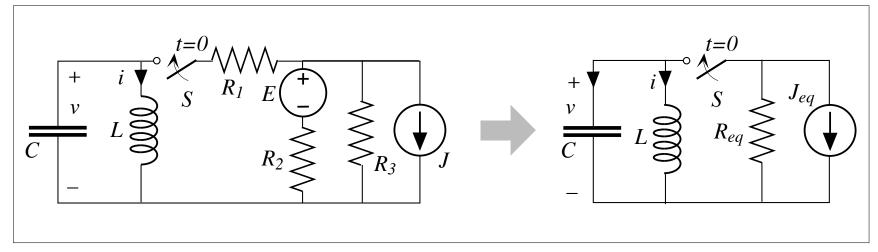
parametri caratteristici
$$\alpha \triangleq \frac{G}{2C}$$
 $\omega_o \triangleq \frac{1}{\sqrt{LC}}$ $G_c \triangleq 2\sqrt{\frac{C}{L}}$ $\xi \triangleq \frac{G}{G_c} = \frac{\alpha}{\omega_o}$

 α [s⁻¹] = costante di smorzamento; ω_o [s⁻¹] = pulsazione naturale non smorzata; R_c [S] = conduttanza critica; ξ [Ø] = fattore di smorzamento

Reti con parti adinamiche complesse

Possono essere eseguite le usuali semplificazioni. Esempi:





Proprietà delle reti lineari inerti -1

Relazioni tra bipoli della rete e pulsazioni naturali

- **Esistenza pulsazioni naturali:** n > 0 nell'equazione caratteristica, solo se $p > 0 \rightarrow$ se la rete contiene elementi dinamici (condensatori, induttori, doppi bipoli induttivi); altrimenti la rete è adinamica.
- Esistenza pulsazioni naturali con parti immaginarie: $\omega_i \neq 0$ solo se la rete contiene elementi dinamici, in particolare condensatori che interagiscono con induttori o con doppi bipoli induttivi, oppure elementi dinamici dello stesso tipo (o capacitivi o induttivi) che interagiscono tramite elementi non reciproci (come il giratore).
- Esistenza pulsazioni naturali con parti reali: $\sigma_i \neq 0$ solo se la rete contiene elementi adinamici (resistori, doppi bipoli adinamici) che interagiscono con elementi dinamici. $\sigma_i < 0$ sono dovute a elementi adinamici passivi, come i resistori passivi e i doppi bipoli adinamici passivi, e $\sigma_i > 0$ ad elementi adinamici attivi, come i resistori attivi ed i generatori pilotati.

n.b.: le ultime due condizioni sono necessarie ma non sufficienti

Proprietà delle reti lineari inerti -2

Reti instabili

• Se sono presenti n-poli adinamici inerti attivi, possono presentarsi $\sigma_i > 0 \rightarrow$ i fattori temporali $e^{\sigma it}$ dei relativi modi normali naturali si espandono nel tempo, facendo divergere $y_o \rightarrow$ la rete è detta **instabile**.

Reti stabili e assolutamente stabili - transitori

- Se tutti gli n-poli adinamici inerti sono passivi $\rightarrow \forall \sigma_i \leq 0 \rightarrow$ tutti fattori $e^{\sigma it}$ dei modi normali naturali non si espandono nel tempo, come pure $y_o \rightarrow$ La rete è detta **stabile**. Questa è una proprietà fondamentale delle reti inerti passive. Si possono presentare due casi.
- $\sigma_i = 0$ (mai multiple): modi naturali permanenti = costanti se $\omega_i = 0$, = sinusoidi se $\omega_i \neq 0$. Se $\forall \sigma_i = 0$ la rete è detta **conservativa**.
- σ_i < 0: modi naturali decadenti a zero con costante di tempo T_i = $-1/\sigma_i$. Se $\forall \sigma_i$ < 0 tutti i modi naturali tendono a zero con la loro T_i come pure y_o . La più grande tra tutte le costanti di tempo è chiamata **costante di tempo dominante** e determina la durata di y_o . Gli integrali delle omogenee sono **transitori**. la rete è detta **dissipativa** o anche **assolutamente stabile** o **asintoticamente stabile**.

Proprietà delle reti lineari inerti -3

Considerazioni energetiche nelle reti passive di evoluzione libera

Consideriamo una rete dissipativa con $\forall \sigma_i < 0$, in evoluzione libera: è priva di generatori indipendenti e l'integrale dell'omogenea costituisce l'intera risposta.

Conservazione delle potenze con porte convenzionate da utilizzatori: $p_a + p_d = 0$.

- $p_a \ge 0$ negli *n*-poli adinamici strettamente passivi (resistori passivi)
- $\rightarrow p_d = -p_a \le 0$ negli *n*-poli dinamici passivi (capaci di accumulare energia). Esempio per condensatore, induttore o coppia condensatore-induttore:

$$p_d = \frac{d}{dt} \left(\frac{C v^2}{2} \right) < 0$$
 $p_d = \frac{d}{dt} \left(\frac{L i^2}{2} \right) < 0$ $p_d = \frac{d}{dt} \left(\frac{C v^2}{2} + \frac{L i^2}{2} \right) < 0$

→ Le variabili di stato decrescono progressivamente, andando a zero a fine transitorio

Reti reali sono tipicamente dissipative: presentano transitori di questo tipo, alla cui estinzione si instaurano i regimi permanenti, stazionari (c.c.) o periodici (c.a.)

Costanti d'integrazione -1

L'analisi differenziale dice che le n costanti di integrazione che compaiono nei modi dell'integrale dell'omogenea $y_o(t)$ si ottengono fissando i valori iniziali (in t=0 $^+$) dell'**integrale complessivo** $y(t) = y_p(t) + y_o(t)$ e delle sue n-1 derivate:

$$y(0^{+}) = y_{p}(0^{+}) + y_{o}(0^{+})$$

$$\frac{dy(t)}{dt}\Big|_{t=0^{+}} = \frac{dy_{p}(t)}{dt}\Big|_{t=0^{+}} + \frac{dy_{o}(t)}{dt}\Big|_{t=0^{+}}$$

• • • • •

$$\frac{dy^{(n-1)}(t)}{dt^{(n-1)}}\bigg|_{t=0^{+}} = \frac{dy_{p}^{(n-1)}(t)}{dt^{(n-1)}}\bigg|_{t=0^{+}} + \frac{dy_{o}^{(n-1)}(t)}{dt^{(n-1)}}\bigg|_{t=0^{+}}$$

Costanti d'integrazione -2

I valori che devono assumere tali espressioni sono imposti dalle grandezze di rete note in t=0⁺

queste sono soltanto i valori iniziali delle variabili di stato e degli ingressi (se presenti):

$$y_{s}(0^{+}) x(0^{+})$$

ossia

$$v_{\rm C}(0^+)$$
 $i_{\rm L}(0^+)$ $e(0^+)$ $j(0^+)$

Per collegare l'uscita e le sue n-1 derivate in $t=0^+$ a questi valori noti in $t=0^+$ si usano le equazioni di rete, valide per t>0.

In particolare se l'uscita è una variabile di stato, bisogna che il valore che essa assume in $t=0^+$ sia uguale al valore imposto ad essa in $t=0^+$ dallo studio dell'istante critico (ma non solo ...).

Oscillatore LC-1

$$e(t) = E_M sen \omega t = 360 sen 100t$$

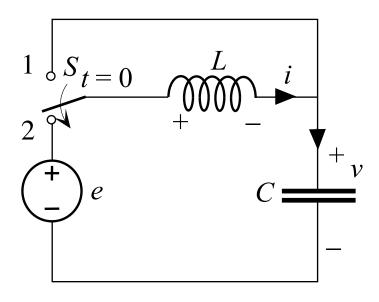
$$C = 40 \ \mu \text{F}$$
 $L = 100 \ \text{mH}$

$$i(t) = 1,2 \text{ A}$$
 $v(t) = 30 \text{ V}$

$$\rightarrow i(0^{-})=1,2 \text{ A} \quad v(0^{-})=30 \text{ V}$$

Non possono comparire correnti e

tensioni impulsive: $i(0^{+})=1,2 \text{ A e } v(0^{+})=30 \text{ V}$



$$\rightarrow$$
 Per $t > 0$ si crea l'oscillatore *LC* con $i_p(t)$ e $i_o(t)$ note:

$$i(t) = i_p(t) + i_o(t) = (I_M \cos \omega t) + (I_{oc} \cos \omega_o t + I_{os} \sin \omega_o t)$$

= $(1,5 \cos 100t) + (I_{oc} \cos 500t + I_{os} \sin 500t)$

Oscillatore LC -2

EDO con n=2 e due costati di integrazione

$$\rightarrow$$
 Vanno imposti $y(0^+) = y_p(0^+) + y_o(0^+)$

$$\frac{dy(t)}{dt}\bigg|_{t=0^{+}} = \frac{dy_{p}(t)}{dt}\bigg|_{t=0^{+}} + \frac{dy_{o}(t)}{dt}\bigg|_{t=0^{+}}$$

Valore di $y(0^+)$:

$$i(0^+) = I_M + I_{oc} = 1,5 + I_{oc}$$

i(t) è variabile di stato nota in $t=0^+$: $i(0^+)=1,2$ A

$$\rightarrow$$

$$1,5 + I_{oc} = 1,2 \text{ A}$$

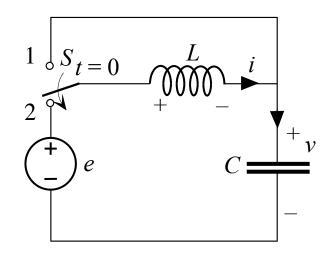
$$\rightarrow$$

$$I_{oc} = 1,2 - 1,5 = -0,3 \text{ A}$$

Oscillatore LC-3

Valore di $dy/dt|_{t=0+}$:

$$\begin{aligned} \frac{di}{dt} &= \left(-\omega I_{M} sen\omega t\right) + \left(-\omega_{o} I_{oc} sen\omega t + \omega_{o} I_{os} cos\omega t\right) \\ \frac{di}{dt}\bigg|_{t=0^{+}} &= \left(-\omega I_{M} 0\right) + \left(-\omega_{o} I_{oc} 0 + \omega_{o} I_{os} 1\right) = \omega_{o} I_{os} \end{aligned}$$



Deve essere legata all'altro valore iniziale noto: $v(0^+)=30 \text{ V}$

dalle equazioni di rete:
$$\frac{di}{dt} = \frac{v_L}{L} = \frac{e - v}{L}$$
 $\rightarrow \frac{di}{dt}\Big|_{t=0^+} = \frac{e(0^+) - v(0^+)}{L}$

Oscillatore LC-4

$$i(t) = I_{pM} \cos \omega t + \left[i(0^{+}) - I_{pM} \right] \cos \omega_{o} t - \frac{v(0^{+})}{\omega_{o} L} \sin \omega_{o} t =$$

$$= 1,5 \cos 100 t - 0,3 \cos 500 t - 0,6 \sin 500 t$$

