Università di Padova - Scuola di Ingegneria

Massimo Guarnieri

Elettrotecnica Capitolo 21 Complementi sulle reti in regime variabile aperiodico

Trasformata di Laplace

La trasformata di Laplace è uno strumento matematico alla base di un procedimento molto potente di analisi dei sistemi dinamici e in particolare delle reti elettriche.

- È in grado di fornire, con un unico algoritmo molto compatto, le uscite complete di: addendi discontinui ed impulsivi nell'istante iniziale e integrale particolare ed integrale dell'omogenea della risposta continua successiva.
- Può essere pericolosa, perché non permette verifiche intermedie.
- Noi qui ne facciamo un uso parziale, funzionale alle nostre esigenze.
- Verrà trattata in modo più esteso in Controlli Automatici.

Trasformata di Laplace - definizione

a(t) = funzione reale per $t \ge 0$

 $s = \sigma + j\omega$ = variabile complessa

$$A(s) = \mathcal{L}\left[a(t)\right] \triangleq \int_{0^{-}}^{+\infty} a(t)e^{-st} dt$$

ove (valori di s) l'integrale converge

A(s) = trasformata di Laplace (o Laplace-trasformata o L-trasformata) di a(t)

s = pulsazione complessa

$$a(t) = \mathcal{L}^{-1}[A(s)] \triangleq \frac{1}{j2\pi} \int_{\sigma^* - j\infty}^{\sigma^* + j\infty} A(s)e^{st} ds$$

a(t) = anti-trasformata di Laplace (o anti-Laplace-trasformata o anti-Laplace-trasformata) di A(s)

 σ^* = ascissa reale a destra delle eventuali singolarità di A(s)

Trasformata di Laplace - proprietà

La L-trasformata è lineare:

$$\begin{cases} c(t) = a(t) + b(t) & \Leftrightarrow & C(s) = A(s) + B(s) \\ c(t) = k \ a(t) & \Leftrightarrow & C(s) = k \ A(s) \end{cases}$$

$$c(t) = \frac{d \, a(t)}{dt}$$

$$\Leftrightarrow$$

Inoltre:
$$c(t) = \frac{d a(t)}{dt}$$
 \Leftrightarrow $C(s) = s A(s) - a(0^{-})$

se
$$a(0^-)=0 \to C(s) = sA(s)$$
.

Se a(t) e le derivate inferiori sono nulle in $t=0^-$:

$$c(t) = \frac{d^{i} a(t)}{dt^{i}} \qquad \Leftrightarrow \qquad C(s) = s^{i} A(s)$$

Rete operatoriale

Equazioni di rete alle L-trasformate:

sono algebriche e lineari in campo complesso

$$\begin{cases}
A i = 0 \\
B v = 0
\end{cases}$$

$$v - R i = 0$$

$$v - R i = 0$$

$$v - L di/dt = 0$$

$$v = e(t)$$

$$i = j(t)$$

$$\begin{cases}
A I(s) = 0 \\
B V(s) = 0
\end{cases}$$

$$V(s) - R I(s) = 0$$

$$V(s) - R I(s) = 0$$

$$V(s) - SL I(s) = 0$$

$$V(s) = E(s)$$

$$I(s) = J(s)$$

Rete operatoriale

→ La rete operatoriale è lineare in campo complesso Bipoli passivi – impedenza operatoriale e ammettenza operatoriale:

$$V(s) = Z(s)I(s)$$
 , $I(s) = Y(s)V(s)$, $Y(s) = \frac{1}{Z(s)}$

Per resistore, induttore e condensatore:

$$Z_R(s) = R$$
 $Z_L(s) = sL$ $Z_C(s) = \frac{1}{sC}$

$$Y_R(s) = G = \frac{1}{R}$$
 $Y_L(s) = \frac{1}{sL}$ $Y_C(s) = sC$

sono funzioni complesse della pulsazione complessa s si ottengono dai parametri del regime sinusoidale sostituendo $0+j\omega$ (ove $\omega=2\pi f$ è fissato) con $s=\sigma+j\omega$ (con σ e ω variabili)

Rete operatoriale

Anche in questo caso valgono i metodi di analisi basati sull'algebra lineare complessa:

- serie e paralleli di impedenze ed ammettenze generalizzate presentano impedenze ed ammettenze generalizzate equivalenti $Z_s(s)$, $Y_s(s)$ e $Y_p(s)$, $Z_p(s)$ valutabili con le modalità usuali
- partitori di tensione e di corrente presentano rapporti di partizione $\rho_v(s)$ e $\rho_i(s)$ valutabili con le modalità usuali
- sono applicabili i metodi delle correnti cicliche, dei potenziali ai nodi e della sovrapposizione degli effetti
- sono applicabili i teoremi di Thévenin e di Norton
- è applicabile il teorema di sostituzione
- n.b.: $Z_s(s)$, $Y_s(s)$, $Y_p(s)$, $Z_p(s)$, $\rho_v(s)$ e $\rho_i(s)$ sono funzioni complesse di variabile complessa

Funzione di trasferimento

Elaborando le equazioni di rete operatoriale \rightarrow relazione tra un'uscita ed un ingresso:

$$Y(s) = H(s) X(s)$$

H(s) = **funzione di trasferimento** = rapporto tra le L-trasformate di uscita (effetto) e ingresso (causa):

$$H(s) \triangleq \frac{Y(s)}{X(s)}$$

Funzione complessa di variabile complessa.

Per $s^* = 0 + j\omega^* = j\omega^* \rightarrow$ funz. di trasferimento del regime sinusoidale a $f = \omega^*/2\pi$

Per $s^* = 0 + j0 = 0$ \rightarrow funz. di trasferimento del regime stazionario

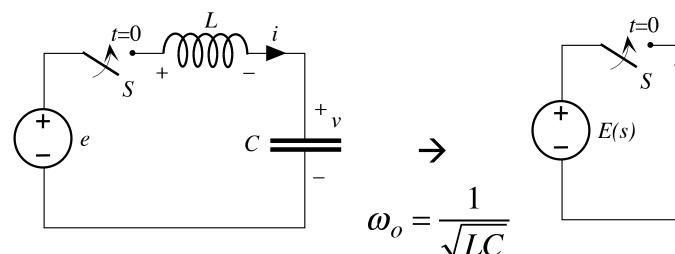
Funzione di trasferimento

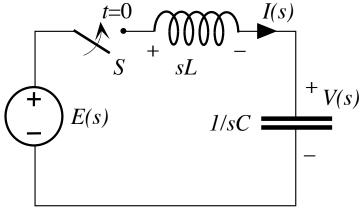
L-trasformata di $\delta_o(t)$: $\mathcal{L}[\delta_o(t)]=1$

 \rightarrow L-trasformata della *risposta impulsiva* $y_{\delta}(t)$ all'ingresso impulsivo di ampiezza unitaria x(t)=1 $\delta_o(t)$

$$H(s) = \mathcal{L}[y_{\delta}(t)] = Y_{\delta}(s)$$

Oscillatore L-C





Rete in t

$$I(s) = \frac{E(s)}{sL + \frac{1}{sC}} = \frac{sC}{LCs^2 + 1}E(s) = \sqrt{\frac{C}{L}} \frac{\omega_o s}{s^2 + \omega_o^2} E(s) \qquad H_{ie}(s) = Y_s(s) = \sqrt{\frac{C}{L}} \frac{\omega_o s}{s^2 + \omega_o^2}$$

Rete operatoriale
$$\rightarrow$$

$$H_{ie}(s) = Y_s(s) = \sqrt{\frac{C}{L}} \frac{\omega_o s}{s^2 + \omega_o^2}$$

$$V(s) = \frac{\frac{1}{sC}}{sL + \frac{1}{sC}}E(s) = \frac{1}{LCs^2 + 1}E(s) = \frac{\omega_o^2}{s^2 + \omega_o^2}E(s) \qquad H_{ve}(s) = \rho_v(s) = \frac{\omega_o^2}{s^2 + \omega_o^2}$$

$$H_{ve}(s) = \rho_v(s) = \frac{\omega_o^2}{s^2 + \omega_o^2}$$

sono le due funzioni di trasferimento, per corrente di L e tensione di C

Deduzione dell'integrale particolare con *H(s)*

Determinata H(s), imponendo alla variabile complessa s il valore di pulsazione proprio dell'ingresso $X(s^*)$, si ottiene $H(s^*)$ da cui si ricava l'integrale particolare $\rightarrow Y_p = H(s^*)X(s^*)$.

Esempio: oscillatore LC

Ingr. sinusoidale: $s^* = j\omega^*$

(in forma fasoriale)

$$\overline{Y}_{p} = H(j\omega) \overline{X} = [|H(j\omega)|X] e^{j[\varphi(j\omega) + \chi]}$$

$$I(j\omega) = \overline{I} = \frac{\overline{E}}{j\omega L + \frac{1}{j\omega C}} = \frac{j\omega C}{-\omega^{2}LC + 1} \overline{E}$$

$$V(j\omega) = \overline{V} = \frac{\frac{1}{j\omega C}}{j\omega L + \frac{1}{j\omega C}} E(s) = \frac{1}{-\omega^2 LC + 1} \overline{E} \qquad V = \frac{1}{0LC + 1} E = E$$

Ingr. stazionario: $s^* = 0$ (grandezze costanti)

$$Y_p = H(0) X = [|H(0)| X]$$

$$I = \frac{0C}{0LC + 1}E = 0$$

$$V = \frac{1}{0LC + 1}E = E$$

Deduzione dell'equazione differenziale da H(s)

Una volta determinata, H(s) può essere espressa come rapporto polinomiale:

$$Y(s) = \frac{N(s)}{D(s)} X(s) = \frac{\sum_{i=0}^{m} b_i s^i}{\sum_{i=0}^{n} a_i s^i} X(s)$$

moltiplicazione per D(s):

$$\sum_{i=0}^{n} a_i s^i Y(s) = \sum_{i=0}^{m} b_i s^i X(s)$$

anti-trasformazione nel tempo

$$\sum_{i=0}^{n} a_{i} \frac{d^{i} y}{dt^{i}} = \sum_{i=0}^{m} b_{i} \frac{d^{i} x}{dt^{i}}$$

è l'equazione differenziale D(x)

Deduzione dell'equazione caratteristica da H(s)

Dalle equivalenze

$$Y(s) = \frac{N(s)}{D(s)} X(s) = \frac{\sum_{i=0}^{m} b_i s^i}{\sum_{i=0}^{n} a_i s^i} X(s) \rightarrow \sum_{i=0}^{n} a_i \frac{d^i y}{dt^i} = \sum_{i=0}^{m} b_i \frac{d^i x}{dt^i}$$

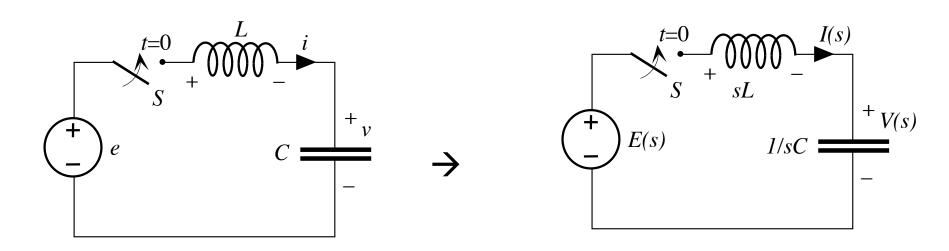
Discende che D(s) è il polinomio caratteristico e D(s)=0 l'equazione caratteristica dell'omogenea associata,

$$\sum_{i=0}^{n} a_i s^i = 0$$

le cui radici costituiscono le pulsazioni generalizzate naturali della rete (che definiscono i modi naturali dell'integrale dell'omogenea associata).

n.b.: alcune funzioni di trasferimento possono mancare di qualche modo naturale dell'integrale complessivo dell'omogena associata, se l'ingresso non è in grado di "eccitare" la relativa pulsazione generalizzata

Oscillatore L-C



Rete in *t*

Rete operatoriale \rightarrow

$$I(s) = \frac{sC}{LCs^2 + 1}E(s) \rightarrow (LCs^2 + 1)I(s) = sC E(s) \rightarrow LC\frac{d^2i}{dt^2} + i = C\frac{de}{dt}$$

$$V(s) = \frac{1}{LCs^2 + 1}E(s) \rightarrow (LCs^2 + 1)V(s) = E(s) \rightarrow LC\frac{d^2v}{dt^2} + v = e$$

Il denominatore delle funzioni di trasferimento posto =0 fornisce l'equazione caratteristica $LCs^2+1=0$

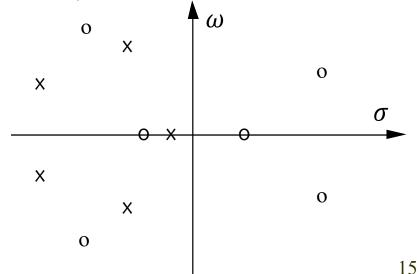
Poli e zeri di *H(s)*

$$Y(s) = \frac{N(s)}{D(s)} X(s) = \frac{\sum_{i=0}^{m} b_i s^i}{\sum_{i=0}^{n} a_i s^i} X(s)$$

Il numeratore N(s), di grado m, ha m radici complesse z_i = **zeri** di H(s) Il denominatore D(s), di grado n, ha n radici complesse p_i = **poli** di H(s) Con essi H(s) può essere fattorizzata:

$$H(s) = \frac{N(s)}{D(s)} = \frac{b_m}{a_n} \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)}$$

La mappa di zeri e, specialmente, dei poli identifica il tipo di risposta: Ad esempio in rete assolutamente stabile i poli stanno tutti a sinistra dell'asse immaginario



Reti singolari

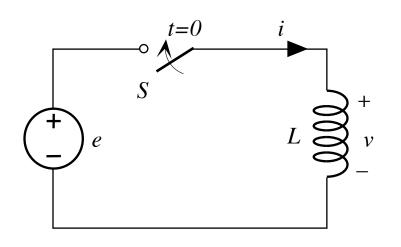
$$H(s) = \frac{N(s)}{D(s)} = \frac{b_m}{a_n} \frac{\prod_{i=1}^m (s - z_i)}{\prod_{i=1}^n (s - p_i)}$$

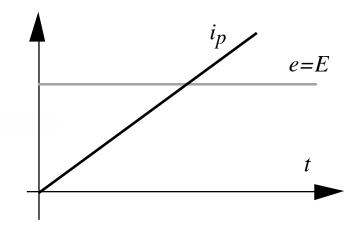
Se la pulsazione s^* dell'ingresso $X(s^*)$ coincide con un polo p_i nell'integrale particolare si ha $H(s^*) \rightarrow \infty$ e $Y_p = H(s^*)X(s^*) \rightarrow \infty$

 \rightarrow l'integrale particolare sincrono con l'ingresso non esiste \rightarrow la rete è singolare rispetto a quell'ingresso (il regime è impossibile). Esiste però un integrale particolare y_p con elongazione a rampa nel tempo.

ingresso	x(t)	s* di x(t)	$p_i \operatorname{di} H(s)$	$y_p(t)$
costante	X	0+j0	0+j0	tK
sinusoidale	$X_M sen(\omega t + \chi)$	$j\omega$	$\pm j\omega$	$tKsen(\omega t + \gamma)$

Esempio





$$I_p(s) = \frac{1}{sL} E(s) = \frac{1}{L} \frac{1}{(s-0)} E(s) \rightarrow \text{non esiste soluzione costante } (s^*=0)$$

ma esiste $\rightarrow i_p = K t$

anti-trasformazione
$$\rightarrow$$
 e.d.o.: $L \frac{di}{dt} = E \qquad \rightarrow \quad i_p = K t$