
Esercizio ripasso I compitino - Moti relativi

10 maggio 2020

Si consideri un ascensore che si muove con accelerazione $\vec{a_T} = -\vec{g}/3$ e che contiene, sospeso mediante una carrucola liscia di massa trascurabile, il sistema meccanico, riportato in figura, costituito dalle masse m_1 e $m_2 = m_1/3$ collegate fra loro da una fune inestensibile di massa trascurabile. Calcolare le accelerazioni di m_1 e m_2 rispetto:

- 1. ad un osservatore solidale con l'ascensore, a'_1, a'_2
- 2. ad un osservatore (inerziale) al suolo, a_1, a_2

Soluzione

1. Un osservatore nel sistema relativo all'ascensore osseva il corpo m_1 scendere e il corpo m_2 salire con la accelerazione $\vec{a_1}' = -\vec{a_2}'$, a causa dell'inestensibilità del filo. Essendo l'ascensore in moto accelerato l'osservatore deve considerare le forze di inerzia apparenti $-m_1\vec{a_T}$ e $-m_2\vec{a_T}$ agenti rispettivamentne su m_1 e m_2 e dirette verso il basso, per cui le equazioni del moto dei due corpi nel sistema relativo sono:

$$\begin{cases}
 m_1 \vec{g} - m_1 \vec{a_T} + \vec{T} = m_1 \vec{a_1}' \\
 m_2 \vec{g} - m_2 \vec{a_T} + \vec{T} = m_2 \vec{a_2}'
\end{cases}$$
(1)

che, sostituendo $\vec{a_1}' = -\vec{a_2}'$, corrispondono alle equazioni scalari

$$\begin{cases}
-m_1 g - m_1 a_T + T = m_1 a_1' \\
-m_2 g - m_2 a_T + T = -m_2 a_1'
\end{cases}$$
(2)

Sottraendo membro a membro e sostituendo $a_T = g/3$ e $m_2 = m_1/3$ si ottiene

$$-m_1g - m_1\frac{g}{3} + \frac{m_1}{3}g + \frac{m_1}{3}\frac{g}{3} = m_1a_1' + \frac{m_1}{3}a_1'$$
 (3)

da cui si ricava

$$\begin{cases} a'_1 = -\frac{2}{3}g & (basso) \\ a'_2 = -a'_1 = \frac{2}{3}g & (alto) \end{cases}$$
 (4)

2. La legge di trasformazione delle accelerazioni fra sistemi di riferimento in moto relativo traslatorio è

$$\vec{a} = \vec{a}' + \vec{a_T} \tag{5}$$

che applicata a m_1 porge

$$\begin{cases} \vec{a_1}' = \frac{2}{3}\vec{g} \\ \vec{a_T} = -\frac{1}{3}\vec{g} \end{cases} \Rightarrow a_1 = -\frac{2}{3}g + \frac{1}{3}g = -\frac{1}{3}g \quad (basso)$$
 (6)

e applicata a m_2 porge

$$\begin{cases} \vec{a_2}' = -\frac{2}{3}\vec{g} \\ \vec{a_T} = -\frac{1}{3}\vec{g} \end{cases} \Rightarrow a_2 = \frac{2}{3}g + \frac{1}{3}g = g \quad (alto)$$
 (7)

Si noti che $\vec{a_1} = -\vec{a_2}'$, mentre $\vec{a_1} \neq -\vec{a_2}$. La condizione $\vec{a_1} = -\vec{a_2}$ vale infatti solo nei sistemi inerziali $(v_T = cost)$, mentre l'accelerazione dell'ascensore implica che a_T si somma all'accelerazione a_1 che il corpo m_1 avrebbe nel sistema inerziale e si sottrae all'accelerazione a_2 che il copro m_2 avrebbe nel sistema inerziale rendendo così diverse le accelerazioni assolute. L'osservatore nel sistema non inerziale non è invece conscio di questo effetto e per rendere compatibili le sue misure deve introdurre la forza apparente d'inerzia.