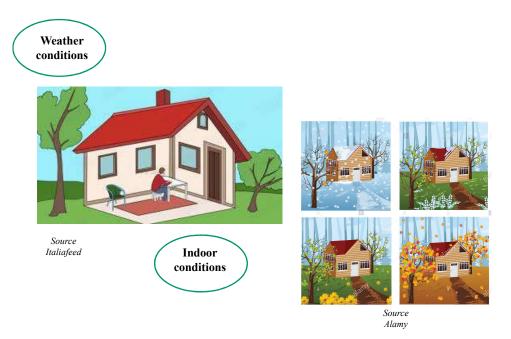
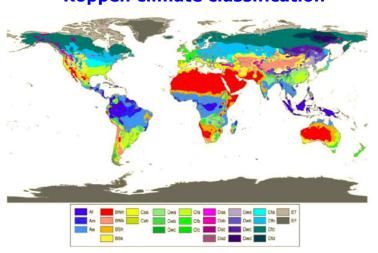
WEATHER CONDITIONS


Michele De Carli

Important observation:

The architecture in the past is designed based on local climatic conditions

In the past few resources and materials forced to invent architecture rules based on the weather conditions.



Parameters affecting building performance

HOW TO DEFINE THE CLIMATE OF A ZONE

- Outside air temperature
- Relative humidity
- Speed and wind direction
- Solar radiation

Köppen climate classification

- **GROUP A: Tropical/megathermal climates**
- GROUP B: Dry (arid and semiarid) climates GROUP C: Temperate/mesothermal climates
- **GROUP D: Continental/microthermal climate**
- **GROUP E: Polar climates**
- **GROUP H: Alpine climates**

Source Peel et al. 2007

HOW TO DEFINE THE TEMPERATURE

- Design temperature during winter and summer
- Average yearly temperature
- **Degree Day**
- 12 monthly average temperature
- 12 profiles for the average day of the month (24 hours for 12 months)
- TRY (Test Reference Year): 8760 hourly values

Average yearly temperature

A single value for the average temperature during all the year (ground temperature)

Design temperature in winter conditions

Minimum temperature (conservative condition):

It is used for calculating the peak power for heating:

- size the emission systems (radiators, radiant floor, fan-coil) room by room
- size the generation system (boiler, heat pump, etc.).

	Heat	ing coldest	month	Cooling hottest month					
	[n]	DB 99.6% [°C]	DB 99.0% [°C]	[n]	DB Range [°C]	DB 4% [°C]	WB 4% [°C]		
Abu Dhabi	1	11.5	12.9	8	12.5	44.9	23.2		
Athens	2	1.6	3.1	8	9.1	35.1	21.1		
Auckland	7	1.8	2.9	2	6.9	25.2	19.7		
Bangkok	12	19	20.4	4	9.2	37.2	26.7		
Beijing	1	-10.8	-9.1	7	8.9	34.9	22.2		
Berlin	2	-11.8	-10.8	7	9.2	30	18.9		
Buenos Aires	7	-0.1	1.3	1	11.8	33.7	22.5		
Cairo	1	7.7	8.7	7	11.5	38.1	21.1		
Cape Town	7	3.8	5	2	9.5	31	19.4		
Caracas	2	20.7	21.2	9	7.2	33.4	28		
Chicago	1	-20	-16.6	7	10.5	33.3	23.7		
Dakar	2	16.5	16.9	9	5.1	32.1	23.5		
Debrecen	1	-13.8	-10.9	7	11.1	7.7	21.3		
Helsinki	2	-22.8	-19.1	7	9.5	26.7	17.9		
Houston	1	-1.6	0.5	7	10.1	36	24.8		
Lima	8	14	14.6	2	6.3	29.3	23.6		
London	2	-4.6	-3	7	9.7	27.2	18.7		
Melbourne	7	2.8	3.8	2	11.6	34.6	18		
Mexico City	1	4.1	5.6	5	13.8	29	13.8		
Montreal	1	-23.7	-21.1	7	9.3	30	22.1		
Moscow	2	-23.1	-19.8	7	8.3	28.4	20.1		
Mumbai	1	16.5	17.8	5	5.6	35.8	23		

Example of design tempetratures 1/2

	Heat	ing coldest	month		Cooling h	ottest mon	th
	[n]	DB 99.6% [°C]	DB 99.0% [°C]	[n]	DB Range [°C]	DB 4% [°C]	WB 4% [°C]
Nairobi	7	9.8	11	3	11.9	29	15.7
New Delhi	1	6.3	7.3	6	9.7	42	22.2
New York	1	-10.7	-8.2	7	7.4	32.1	23.1
Paris	1	-5.9	-3.8	7	10.1	30.9	20.1
Phoenix	12	3.7	5.2	7	12	43.4	21.1
Riyadh	1	5.9	7.2	7	13.5	44.2	18.7
Salt Lake City	1	-12.6	-9.9	7	14.4	36.3	17.5
San Paulo	7	8.9	10	2	8.2	32.1	20.4
Seville	1	1.3	2.9	7	16.4	39.9	23.8
Sidney	7	6	7	2	6.5	32.8	19.6
Singapore	12	23	23.5	6	5.5	33.2	26.4
Stockholm	2	-17.8	-14.2	7	9.4	27.1	17.5
Strasburg	1	- <mark>9.8</mark>	-7	7	11.1	31.1	20.9
Tehran	1	-2.8	-1.3	7	10.6	38.5	19
Tokyo	1	-6.9	-5.1	8	7.7	32.1	26
Vancouver	12	-7	-4	8	7.6	25	18.2
Venice	1	-4	-2.8	7	8.8	31.1	23.5
Washington DC	1	-10.6	-8.2	7	10.4	34.4	23.9

Example of design tempetratures 2/2

Design temperature in summer conditions

Usually defined in standards $t_{amb,h} = t_{amb,\max} - p_h \Delta t_{amb}$

Values for the term ${\pmb p}_{\pmb h}$ used in the evaluation of the external air temperature according to the hour of the day

hour	1	2	3	4	5	6	7	8
p _h	0.87	0.92	0.96	0.99	1	0.98	0.93	0.84
hour	9	10	11	12	13	14	15	16
p _h	0.71	0.56	0.39	0.23	0.11	0.03	0	0.03
hour	17	18	19	20	21	22	23	24
p _h	0.1	0.21	0.34	0.47	0.58	0.68	0.76	0.82

Degree Day (DD)

Degree days (DD): simplified representation of outside air temperature data (effect of outside air temperature on building energy consumptions).

Heating Degree Days (HDD) are a measure of how much (in degrees), and for how long (in days), outside air temperature was lower than a specific base temperature or balance point. They are often used for calculations related to energy consumption required to heat buildings.

Cooling Degree Days (CDD) are a measure of how much (in degrees), and for how long (in days), outside air temperature was higher than a specific base temperature. They are often used for calculations relating to the energy consumption required to cool buildings.

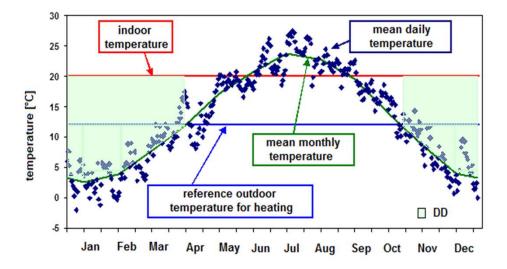
DD is the sum, for each day *j*, of the difference between the internal temperature (t_i) and the daily average external (ambient) temperature ($\overline{t_{amb,d,j}}$). The limits of the heating/cooling season are usually defined by a threshold external reference temperature below which there is heating and above which there is cooling:

$$HDD = \sum_{j=1}^{365} (t_j - \bar{t}_{amb,d,j}) \quad \text{if } \bar{t}_{amb,d,j} < t_{threshold,heating}$$

$$CDD = \sum_{j=1}^{365} (t_i - \bar{t}_{amb,d,j}) \quad \text{if } \bar{t}_{amb,d,j} > t_{threshold,cooling}$$

There are different ways to choose the inner temperatures and the threshold temperatures since different buildings have different base temperatures

		Heati	ng DD	Cooli	ng DD
		18°C	10°C	18°C	10°C
1	Abu Dhabi	24	0	6254	3358
2	Athens	1112	82	2966	1076
3	Auckland	1163	0	1909	131
4	Bangkok	0	0	6757	3837
5	Beijing	2906	1420	2199	765
6	Berlin	3156	1191	1125	170
7	Buenos Aires	1189	0	2524	663
8	Cairo	307	0	4472	1859
9	Cape Town	868	0	2388	326
10	Caracas	0	0	6002	3082
11	Chicago	3430	1748	506	1743
12	Dakar	1	0	5151	2231
13	Debrecen	3129	1313	279	1384
14	Helsinki	4721	2336	577	33
15	Houston	774	134	1635	3915
16	Lima	114	0	3541	735
17	London	2886	778	864	32
18	Melbourne	1733	127	1525	210
19	Mexico City	547	0	2503	131
20	Montreal	4493	2525	1185	234
21	Moscow	4655	2498	862	99
22	Mumbai	0	0	6219	3299

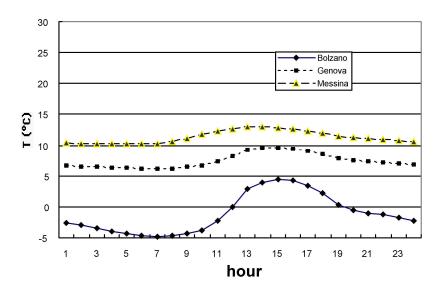

Example of degree days (DD) 1/2

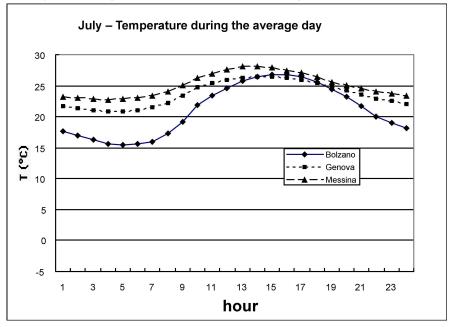
Example of degree days (DD) 2/2

		Heati	Cooli	ng DD	
		18°C	10°C	18°C	10°C
23	Nairobi	243	0	2870	193
24	New Delhi	278	0	5363	2721
25	New York	2627	1052	639	1984
26	Paris	2644	791	1209	142
27	Phoenix	543	28	2661	5066
28	Riyadh	305	0	5915	3301
29	Salt Lake City	2908	1200	669	1881
30	San Paulo	293	1	3483	854
31	Seville	927	19	3031	1020
32	Sidney	687	5	2871	634
34	Singapore	0	0	6374	3454
35	Stockholm	4239	1965	683	36
36	Strasburg	2947	1054	1162	136
37	Tehran	1749	577	1482	3230
38	Tokyo	2311	794	1911	508
39	Vancouver	3020	901	806	5
40	Venice	2262	762	1906	526
41	Washington DC	2478	993	730	2164

Usually in most of the European countries the HDD is quite well established, while the CDD definition is not always clear. In many countries (e.g. Italy and Germany) the reference threshold base temperature for heating condition is fixed at 12°C. The indoor reference indoor temperature depends on the building, but usually it can be considered equal to 20°C. The heating degree day (HDD) can be calculated in an easier way as the difference between the indoor temperature and the mean outdoor monthly temperature times the number of days of the considered month $n_{d,z}$ if the considered z_{th} month has an average temperature lower than 12°C:

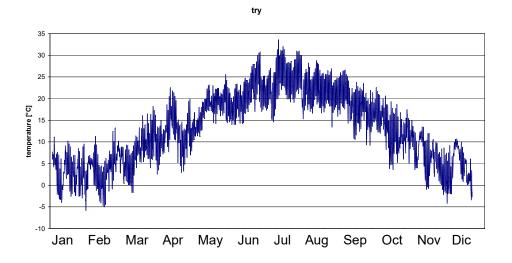
$$HDD = \sum_{z=1}^{12} \left[\left(t_i - \bar{t}_{amb,m,z} \right) \cdot n_{d,z} \right]$$




Monthly average temperature

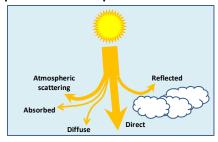
Nº	Sigla Provincia	Località	Altitudine m	GEN. °C	FEB. °C	MAR. °C	APR. °C	MAG. °C	GIU. °C	LUG. °C	AGO. °C	SET. °C	OTT. °C	NOV. °C	DIC °C
1	AG	Agrigento	230	10,4	10,8	12,7	15,6	19,4	24,1	26,9	26,5	24.0	19.9	15,9	12,
2	AL	Alessandria	95	0,0	2.8	8,1	13,1	17,3	22,0	24,7	23,6	19,9	13,1	6,9	1,
3	AN	Ancona	16	6,3	7,1	9,9	13,4	17,0	21,8	24,4	24,1	21,3	16,5	12,1	7.
4	AO	Aosta	583	-0.3	2,6	6,7	11,0	14,7	18,7	20,5	19,4	15,9	10,3	4.8	0
5	AP	Ascoli Piceno	154	5,5	6,6	9,5	13,3	17,2	21,7	24,4	24,3	21,1	15,8	10,9	7
6	AQ	L'Aquiia	714	2,0	3,6	7,1	11,4	15.0	19,1	22.0	21,8	18,6	13,1	8,2	3
7	AR	Arezzo	246	5,1	5,9	9,2	12,6	16,4	20,9	24,0	23,4	20,3	15,0	10,2	6
8	AT	Asti	123	-0,4	2,7	7,9	13,0	17,0	21,6	24,2	22,9	18,9	12,7	6,1	1
9	AV	Aveilino	348	5,5	6,5	8.8	12,4	16,0	20,3	23,1	22,6	19,6	14,8	10,4	6
10	BA	Bari	5	8,6	9,2	11.1	14,2	18,0	22,3	24,7	24,5	22,0	17,9	14,0	10
11	BG	Bergamo	249	3,1	4.9	8,9	13,3	17,0	21,3	23,7	23,2	19,9	14.2	8,6	4
12	BL	Belluno	383	0,1	2.3	6,8	11,2	14,9	18,9	21,2	20,8	17,7	12,4	6,5	1
13	BN	Benevento	135	6,8	7,7	10,3	13,7	17,5	22,1	24,8	24,3	21,4	16.5	12.1	8
14	BO	Bologna	54	2.1	4,6	9,4	14,2	18,2	22,9	25,4	24,9	21,2	14,9	8,7	4
15	BR	Brindisi	15	9,3	9,6	11,4	14,2	18,0	22,0	24,5	24,5	22,1	18,3	14,4	10
16	BS	Brescia	149	1,5	4,2	9,3	13,5	17,7	22,0	24,4	23,7	19.9	14.0	7.8	3
17	BZ	Bolzano	262	1,2	4,2	9,0	13,4	16,9	21,0	22,7	22,0	18,8	12,9	6,7	2
18	CA	Cagliari	4	10,3	10,8	12,8	15,1	18,4	22,9	25,5	25,5	23,3	19,4	15,5	11
19	CB	Campobasso	701	3,7	4,8	7,3	11,1	14,8	19,6	22,5	22,2	18,9	13,5	9.0	5
20	CE	Caserta	68	8,7	9,4	12.0	15,3	19,1	23.5	26,2	26,1	23,0	18,2	13,9	10
21	CH	Chieti	330	5,8	6,8	9,6	13,5	17,2	22,0	24,7	24,3	21,2	15,9	11,3	7
22	CL	Caltanissetta	568	7,2	7.8	9,9	13,1	17,3	22,5	25,7	25,2	22,1	17,3	12,8	8
23	CN	Cuneo	534	1.1	2,9	6,9	11,3	14,8	19,4	21,9	21,0	17,7	11,7	6,2	2
24	CO	Como	201	2.9	5,0	-8,8	12,7	16,7	21,1	23,6	23,1	19,6	13,7	8,4	4
25	CR	Cremona	45	0,7	3,3	8,4	13,3	17,4	21,9	24,3	23,4	19,7	13,4	7,2	2
26	CS	Cosenza	238	8,1	8,8	11,3	14,4	18,1	23,1	26,0	25,8	22,7	17,8	13,4	9
27	CT	Catania	7	10,7	11,2	12,9	15,5	19,1	23.5	26,5	26,5	24,1	19,9	15.9	12
28	CZ	Catanzaro	320	8,3	8,7	10,4	13,4	17.0	21.7	24,4	24,8	22.3	17.9	13.7	10
29	EN	Enna	931	4,5	5,1	7,1	10,7	14,9	20,6	23,9	23,2	19,9	14.5	9,8	6
30	FE	Ferrara	9	1,4	3.3	7,8	12,8	17,3	21,6	23,9	23,5	20,1	14.0	8.2	3
31	FG	Foggia	76	6,4	7,3	10,0	13,8	17,9	23,2	26,0	25,5	22,1	16,9	12,2	7
32	FI	Firenze	40	5,3	6,5	9,9	13,8	17,8	22,2	25,0	24,3	20,9	15,3	10,2	6
33	FO	Forfi	34	3,0	4,6	9,0	13,7	17,8	22,6	25,3	24,8	21,1	15,1	9,3	4
34	FR	Frosinone	291	5,8	6,2	8,0	11,0	15,2	18,5	21,5	20,9	18,8	13,4	9,2	5
35	GE	Genova	19	7,9	8,9	11,6	14,7	17,8	21,9	24,5	24,6	22,3	17,1	12,9	9
36	GO	Gorizia	84	4,7	5,6	8,2	11,9	16,7	19,9	22,0	22,2	18,6	13,2	9.2	4
37	ĠR	Grosseto	10	6.8	8.1	10.3	13.2	17.1	21.2	24.1	23.9	21.3	16.4	11.7	8

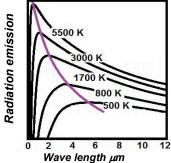
Hourly average temperature during the month 1/2


January – Temperature during the average day

Hourly average temperature during the month 2/2

Test Reference Year (TRY)




Solar radiation 1/3

The spectrum of the Sun's solar radiation is close to that of a black body with a temperature of about 5800 K. By Wien law:

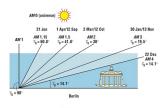
$$\lambda_{max} = \frac{2898}{T} = \frac{2898}{5800} = 0.5 \ \mu m$$

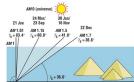
Through the atmosphere different phenomena take place:

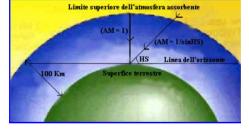
Sunlight reaching the Earth's surface unmodified by any of the atmospheric processes is termed direct/beam solar radiation.

Solar radiation that reaches the Earth's surface after it was altered by the process of scattering is called diffused solar radiation.

Solar radiation 2/3

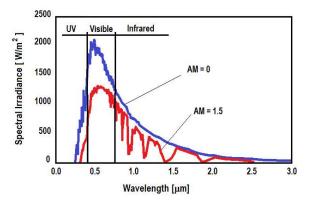

The incident radiation varies according to:


- Latitude, altitude, and time of the day of the year
- The cloudiness and humidity

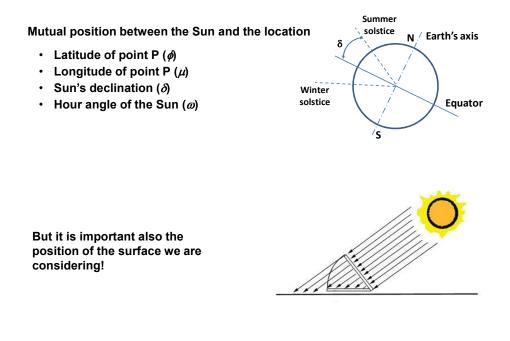

The absorption is proportional to the volume of the crossed atmosphere, function of the inclination between the Sun and the considered horizontal plane in a certain location

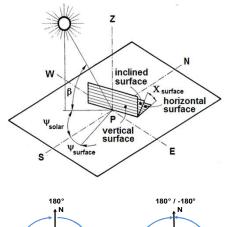
The concept of the air mass (AM):

- AM = 0: Outside the atmosphere
- AM = 1: Crossing of the atmosphere along the normal direction with respect to the surface of the Earth
- AM > 1: Crossing the atmosphere in any other direction



Solar radiation 3/3


Depending on the AM more or less solar energy reaches the location.


Spectral distribution of direct solar radiation:

- Ultraviolet (0.2 ÷ 0.38 µm), 6% of the incoming radiation
- Visible (0.38 \div 0.78 μm), 48% of the incoming radiation
- Infrared (0.78 to 10 μm), 46% of the incoming radiation

Solar radiation and the building

Solar radiation and the building

180° / -180° b 180° / -180° b S S S S S S S S S

> S 0°

Mutual position between the Sun and the surface:

- Solar height (β): angle of the impinging direct solar radiation on the horizontal surface;
- Solar azimuth (ψ_{solar}): angle, measured on the horizontal surface, between the vertical angle containing the Sun and the North-South line;
- Surface azimuth ($\psi_{surface}$): angle measured on the horizontal surface between the normal direction of the surface and the South direction;
- Slope of the surface $(X_{surface})$: angle between the plane containing the surface and the horizontal plane.

Usual definition of solar azimuth angle in a building simulation software

Components of the solar radiation

Direct radiation:

90°

- index of cloudiness
- solar path
- Azimuth of the surface
- Surface slope

Scattered radiation:

- Index of cloudiness
- Tilt of the surface

Reflected radiation:

- Reflectivity of the surrounding environment
- Surface slope

Surronding surface	Reflectivity $ ho$
Urban environment	0.14 ÷ 0.2
Grass	0.15 ÷ 0.25
Fresh grass	0.26
Fresh snow	0.82
Wet snow	0.55 ÷ 0.75
Dry asphalt	0.09 ÷ 0.15
Wet asphalt	0.18
Concrete	0.25 ÷ 0.35
Red tiles	0.33
Aluminium	0.85
Copper	0.74
Galvanized steel	0.35
Very dirty galvanized steel	0.08

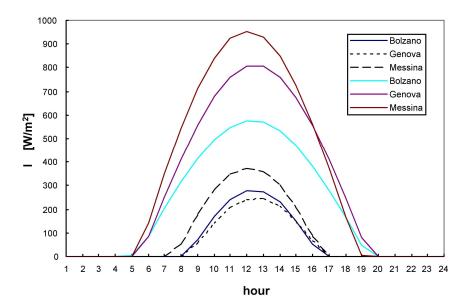
HOW TO EVALUATE THE SOLAR RADIATION

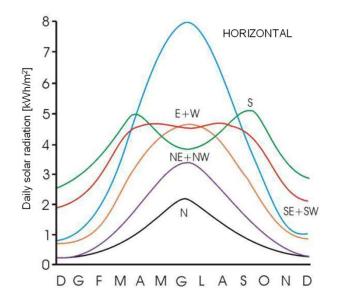
Solar radiation is usually measured on the horizontal plane:

- Single value to define the annual average incident radiation on the horizontal
- > 12 values for the average monthly incident radiation on the horizontal (split into direct and diffuse)
- > 12 average daily profiles of 24 hours for the incident radiation on the horizontal (split into direct and diffuse) during a month (12 x 24 values)
- TRY Test Reference Year: 8760 (365 x 24) values for direct and diffuse radiation on horizontal

Daily average solar radiation

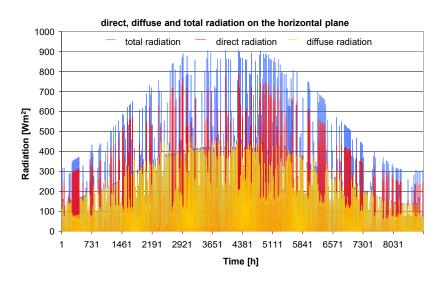
		for the locations of Table 2.3											
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Abu Dhabi	i	4.22	5.32	5.55	6.51	7.64	7.77	7.40	7.22	6.62	5.71	4.56	3.94
Athens		2.07	2.82	4.01	5.14	6.22	7.48	7.53	6.63	5.42	3.52	2.14	1.81
Auckland	1	6.80	5.58	4.67	3.38	2.31	1.93	2.06	2.72	4.04	4.83	5.84	6.38
Bangkok		4.71	5.18	5.87	5.59	5.05	5.09	4.79	4.34	4.61	4.40	4.70	4.59
Beijing		2.33	3.05	4.23	5.30	6.01	6.03	5.27	4.87	4.76	3.44	2.36	2.06
Berlin		0.53	1.18	1.93	3.84	4.84	5.04	5.11	4.35	2.74	1.54	0.80	0.41
Buenos Aire	es	6.84	6.08	4.90	3.60	2.59	2.08	2.29	3.05	4.21	5.29	6.52	6.79
Cairo		2.98	4.01	5.31	6.39	7.39	7.32	6.89	6.24	5.60	4.51	3.37	2.80
Cape Towr	n	7.98	7.20	5.74	4.10	3.04	2.37	2.49	3.52	4.69	6.12	7.51	7.85
Caracas		5.02	5.56	5.94	5.54	5.35	5.85	5.51	6.16	5.88	5.09	4.67	4.36
Chicago		1.76	2.49	3.44	4.39	5.98	6.29	6.18	5.16	4.19	2.94	1.82	1.50
Dakar		4.78	5.45	6.53	6.54	6.66	6.13	5.60	5.29	5.41	5.40	4.68	4.45
Debrecen		0.99	1.89	2.88	4.22	5.49	6.04	6.14	5.34	3.67	2.25	1.19	0.80
Helsinki		0.25	0.91	1.87	3.58	5.31	5.74	5.44	4.02	2.35	1.12	0.31	0.12
Houston		2.83	3.28	4.27	4.92	5.44	5.95	6.18	5.47	5.06	4.25	3.19	2.61
Lima		5.71	5.42	5.85	5.13	3.91	2.78	2.78	2.86	3.30	4.22	4.46	5.08
London		0.71	1.19	2.12	3.64	4.91	4.91	5.02	4.35	2.97	1.75	0.97	0.55
Melbourne	9	6.94	6.11	4.90	3.33	2.17	1.62	1.94	2.77	4.08	5.33	6.54	6.45
Mexico City	у	4.13	4.74	5.43	5.70	5.63	5.63	5.52	5.65	5.10	4.66	4.01	3.52

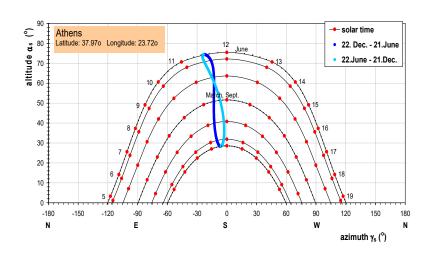

 Table 2.6: Daily average total solar radiation on horizontal [kWh/m2]


 for the locations of Table 2.3

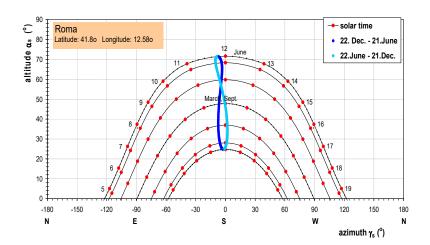
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Montreal	1.66	2.88	4.42	4.56	5.75	6.34	6.01	5.20	4.16	2.57	1.47	1.27
Moscow	0.48	1.20	2.33	3.49	5.04	5.44	5.16	4.12	2.39	1.33	0.58	0.35
Mumbai	4.52	5.31	6.20	6.86	6.56	4.84	3.77	3.84	4.20	5.11	4.74	4.27
Nairobi	6.04	6.56	5.81	4.89	4.34	4.07	4.01	4.74	5.34	5.20	4.72	5.35
New Delhi	3.25	3.68	5.39	6.96	6.61	6.79	5.93	5.10	4.84	4.28	3.92	3.26
New York	1.65	2.60	3.68	4.47	5.53	5.99	5.78	5.95	4.17	3.59	2.04	1.50
Paris	0.78	1.39	2.28	3.63	4.61	5.31	5.36	4.86	3.12	2.03	1.04	0.61
Phoenix	3.29	4.16	5.34	7.09	7.84	8.32	7.62	7.13	6.34	4.82	3.77	3.07
Riyadh	4.28	5.06	5.77	6.41	7.34	8.03	7.82	7.43	6.89	5.99	4.71	3.60
Salt Lake City	1.89	2.92	3.98	5.39	6.32	7.60	7.28	6.37	5.33	3.69	2.30	1.56
San Paulo	5.65	5.39	4.86	4.27	3.34	3.13	3.33	4.15	4.63	5.06	5.58	5.85
Seville	2.53	3.39	4.44	5.49	6.70	7.19	7.56	6.89	5.32	3.97	2.83	2.30
Sidney	6.60	5.63	4.87	3.74	2.66	2.18	2.56	3.56	4.58	5.64	5.99	6.38
Singapore	4.55	4.99	4.80	4.97	4.68	4.47	4.63	4.51	4.57	4.48	4.23	4.12
Stockholm	0.26	0.76	1.77	3.74	5.28	5.36	5.06	3.81	2.32	1.18	0.45	0.20
Strasburg	0.78	1.43	2.75	3.83	4.63	5.40	5.47	4.89	3.30	1.70	0.93	0.66
Tehran	3.06	4.17	5.51	6.48	7.95	8.74	7.99	7.83	6.81	4.98	3.96	2.81
Tokyo	2.52	3.15	3.54	4.61	4.79	4.14	4.39	4.81	3.47	2.93	2.49	2.09
Vancouver	0.80	1.57	2.65	4.55	5.61	5.97	6.56	5.31	3.92	1.79	0.94	0.64
Venice	1.03	1.67	2.97	3.93	4.64	5.39	6.05	4.93	3.21	2.00	1.25	0.76
Washington DC	2.02	2.75	3.88	5.09	5.63	6.46	5.98	5.26	4.30	3.45	2.22	1.83

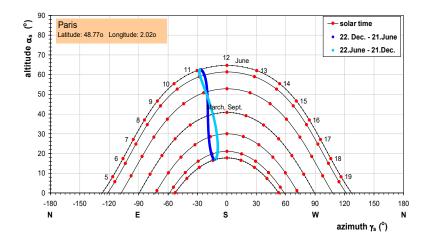
Table 2.6: Daily average total solar radiation on horizontal [kWh/m2] for the locations of Table 2.3



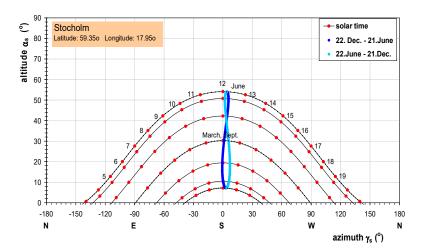


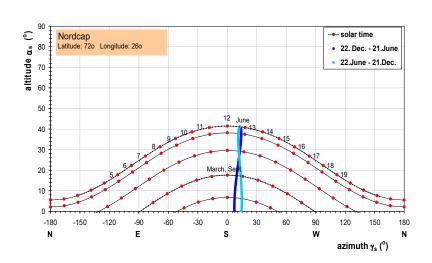
Consequences of the orientation of the surfaces

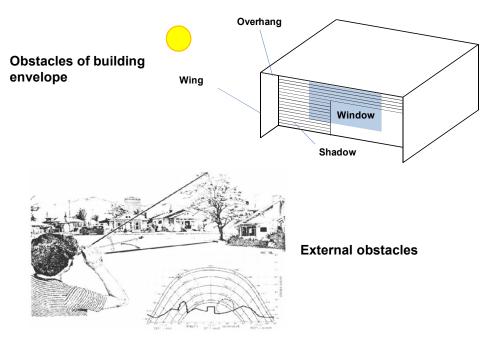

Example of incident solar radiation on a horizontal plane during the year



Solar diagram– Athens (38° Lat)


Solar diagram- Rome (42° Lat)




Solar diagram– Stockholm (59° Lat)

Solar Diagram– North Cape (72° Lat)

Obstacles for solar radiation

