Heat transfer in building envelopes in steady state conditions

Building Physics – Bauphisik Fisica dell'involucro edilizio

Study of the phenomena due to building envelope:

- temperature field, heat flow and study of the temperature distribution;
- transpiration problems of structures and mass transport (vapour) through the building envelope;
- optimization for the durability of the envelope

Thermal conduction

• Foundamental law: Fourier's postulate

$$dq = -\lambda \ dS \quad \frac{\partial \ t}{\partial \ n}$$

Steady state conditions: single layer

$$q = S \frac{\lambda}{s} (t_{si} - t_{se})$$

multi-layer

$$q = \frac{S(t_{si} - t_{se})}{\Sigma(s_i / \lambda_i)}$$

• Thermal conductvity λ [W/(m K)]

Example of materials

Material	Thermal conductivity [W/(m K)]
Light concrete	0.40
Reinforced concrete	2.00
Glass	1.00
Stone	2.50
Bricks	0.50
Hollow bricks	0.40
Internal plaster	0.50
External plaster	0.90
Gypsum board	0.12
Rock wool	0.045
Glass wool	0.05
Expanded polystyrene foam (EPS)	0.04
Extruded polystyrene foam (EPS)	0.03
Polyurethane	0.035
Glass foam	0.052
Cork boards	0.045
PVC	0.19

Materials with λ < 1 W/(m K)

Recommendation:

Usually it is recommended to increase the thermal conductivity by about 10% to consider the vapour content in operating conditions in reality (the declared values have been established in laboratory with low content of humidity).

Other parameters to be considered:

Beside the thermal conductivity, usually the density and the vapour permeability are also usual parameters for building materials which are required for the building energy calculations

Heat transfer in non-homogeneous structures

For these types of building technologies the thermal resistance has to be evaluated.

Specific national standards provide the values of unitary thermal resistance for walls and floors widely used in Italy, based on the results of laboratory tests and detailed calculations, carried out in recent years.

In these cases a fictitious conductivity can be used:

Heat transfer on surfaces

Heat balance on a surface not considering the solar gains or other radiant loads (e.g. lighting)

Convection

A fluid flow at temperature t brushes against a solid surface at temperature t_s

Heat flux:

 $q = h_c S(t_s - t) \qquad t_s > t$

Coefficient of the convective heat transfer

h_c [W/(m² K)]; [kcal/(m² h °C)]

Infrared radiation

Plane, parallel, front facing surfaces at temperature, respectively, T_1 and T_2

$$q = \frac{\sigma_n S (T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$$

 σ_n : Stephan-Boltzmann's constant

5.76 x 10⁻⁸ W/(m² K⁴)

 $\varepsilon_1, \varepsilon_2$: emissivity of the two surfaces. For usual finishing materials of walls

$$\varepsilon_1 = \varepsilon_2 = 0.9$$
 $1 < \frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1 < 1.1$

 $q = \sigma_n \, S \, (T_1^4 - T_2^4) = 4 \, \sigma_n \, S \, T_m^3 \, (T_1 - T_2) = h_r \, S \, (T_1 - T_2)$

 h_r radiant heat transfer coefficient = 5.5 W/(m² K)

Overall heat transfer on a surface

Similarly, on the inner surface of the layer the heat flux is:

$$h_{si} = h_{ri} + h_{ci} = 1/R_{si}$$
$$h_{se} = h_{re} + h_{ce} = 1/R_{se}$$

Surface thermal resistance

Position of the Surface	R _{si} [m2 K / W]	R _{se} [m2 K / W]
Vertical or inclination a of the surface to the horizontal such that 90° ≥ b ≥ 60° (heat flow direction ±30° from the horizontal plane)	0.13	0.04
Vertical or inclination a of the surface to the horizontal such that $60^{\circ} \ge b \ge 0^{\circ}$ (heat flow direction more than 30° from the horizontal plane)	0.10	0.04

Air cavities

U-value of a building element

$$q^{*} = \frac{\lambda}{s}(t_{si} - t_{se})$$

$$q^{*} = h_{si} (t_{si} - t_{i})$$

$$q^{*} = h_{se} (t_{se} - t_{e})$$

$$U = \frac{1}{\frac{1}{h_{si}} + \frac{\lambda}{s} + \frac{1}{h_{se}}}$$
Trasmittance
U-value
[*W*/(*m*² *K*)]

$$q = U S (t_i - t_e)$$

For a multi-layer wall:

$$U = \frac{1}{\frac{1}{h_{si}} + \Sigma \frac{\lambda}{s} + \Sigma R + \frac{1}{h_{se}}}$$

$$R_{tot} = \frac{1}{h_{si}} + \Sigma \frac{\lambda}{s} + \Sigma R + \frac{1}{h_{se}}$$

EXAMPLE OF THERMAL TRANSMITTANCE

Same materials as the slide before: instead of the hollow brick there is an insulation layer

Definitions

The glazed area A_g of a window is the smaller of the visible areas seen form both sides any overlapping of gaskets is ignored. The total visible perimeter of the glazing I_g is the sum of the visible perimeter of the glass panes in the window. If the perimeters are different on either side of the pane, then the larger of the two shall be used.

Internal projected frame area $(A_{f,i})$: area of the projection of the internal frame, including sashes, if present, on a plane parallel to the glazing panel.

External projected frame area $(A_{f,e})$: area of the projected of the external frame, including sashes if present on a plane parallel to the glazing panel.

U-value of glazing

Single glass

s = 4 mm = 0,004 m λ = 1 W/(m K)

$$R_{v} = \frac{s}{\lambda} = \frac{0,004 \text{ m}}{1 \text{ W/(m K)}} = 0,004 \text{ m}^{2} \text{ K / W}$$

$$R_{i} = 1/h_{i} = 1/8 = 0,125 \text{ m}^{2} \text{ K / W}$$

$$R_{e} = 1/h_{e} = 1/25 = 0,04 \text{ m}^{2} \text{ K / W}$$

$$R_{tot} = R_{e} + R_{i} + R_{v} = 0,04 + 0,004 + 0,125 = 0,169 \text{ m}^{2} \text{ K / W}$$

$$U_{g} = 1/R_{tot} = 1/0,169 = 5,92 \text{ W/(m}^{2} \text{ K)}$$

 $U_q = 1/R_{tot} = 1/0.323 = 3.1 \text{ W/(m² K)}$

 $U_g = 1/R_{tot} = 1/0,473 = 2,11 W/(m^2 K)$

General results with different combinations of air spaces

Thickness	Thermal resistance ^R s m ² ·K/W				
of all space	One side coated with a normal emissivity of				Both sides uncoated
mm	0,1	0,2	0,4	0,8	
6	0,211	0,1 <mark>91</mark>	0,163	0 <mark>,1</mark> 32	0,127
9	0,299	0,259	0,211	0,162	0,154
12	0,377	0,316	0,247	0,182	0,173
15	0,447	0,364	0,276	0 <mark>,1</mark> 97	0,186
50	0,406	0,3 <mark>3</mark> 6	0,260	0,189	0,179

Thermal resistance of unventilated air spaces for coupled and double vertical windows

Influence of the gas inside the cavity

% di gas	Argon	Kripton
100%	1.9	1.7
90%	2.0	1.8
70%	2.0	1.9
50%	2.1	2.0

Glazing			Thermal transmittance for different types of gas sp $U_{\rm g}$				gas space		
Туре	Glass	Normal emissivity	Dimensions mm	Air	Argon	Krypton	SF6 ^b	Xenor	
Uncoated glass (normal glass) One pane coated glass			4-6-4	3,3	3,0	2,8	3,0	2,6	
	Uncoated		4-8-4	3,1	2,9	2,7	3,1	2,6	
	0,89	4-12-4	2,8	2,7	2,6	3,1	2,6		
	glass)		4-16-4	2,7	2,6	2,6	3,1	2,6	
		4-20-4	2,7	2,6	2,6	3,1	2,6		
		4-6-4	2,7	2,3	1,9	2,3	1,6		
			4-8-4	2,4	2,1	1,7	2,4	1,6	
	≤ 0,2	4-12-4	2,0	1,8	1,6	2,4	1,6		
		4-16-4	1,8	1,6	1,6	2,5	1,6		
		4-20-4	1,8	1,7	1,6	2,5	1,7		
Double One pane glazing coated glass		4-6-4	2,6	2,3	1,8	2,2	1,5		
	≤ 0,15	4-8-4	2,3	2,0	1,6	2,3	1,4		
		4-12-4	1,9	1,6	1,5	2,3	1,5		
		4-16-4	1,7	1,5	1,5	2,4	1,5		
			4-20-4	1,7	1,5	1,5	2,4	1,5	
			4-6-4	2,6	2,2	1,7	2,1	1,4	
One pane			4-8-4	2,2	1,9	1,4	2,2	1,3	
	≤ 0,1	4-12-4	1,8	1,5	1,3	2,3	1,3		
	coaled glass	4-16-4	4-16-4	1,6	1,4	1,3	2,3	1,4	
		4-20-4	4-20-4	1,6	1,4	1,4	2,3	1,4	
-		One pane ≤ 0,05 4- bated glass ≤ 1,05 4-	4-6-4	2,5	2,1	1,5	2,0	1,2	
			4-8-4	2,1	1,7	1,3	2,1	1,1	
	coated class		4-12-4	1,7	1,3	1,1	2,1	1,2	
	Soated gidss		4-16-4	1,4	1,2	1,2	2,2	1,2	
				4-20-4	1,5	1,2	1,2	2,2	1,2

Thermal transmittance of double and triple glazing filled with different gases for vertical glazing

U-values of frames

They differ from the material they are made.

There are 2 possible calculations:

- 1. With the simplified method of EN ISO 10077-1
- 2. With a detailed method of EN ISO 10077-2

Who has to evaluate the U_f and U_g ? Always the producer: the window has to be CE marked and Uf and Ug have to be declared

But, in existing buildings if no declaration is present the designer has to evaluate the Uw

How to evaluate d_f in a wooden window frame:

U-values of metal frames

For metal frames without thermal break use U_{f0} = 5.9 W/(m²·K) For metal frames with thermal break:

U-values of plastic frames

 U_{f} Frame material Frame type W/(m²·K) with metal core Polyurethane 2,8 thickness of PUR ≥ 5 mm two hollow chambers 2,2 external internal PVC-hollow profiles a three hollow chambers 2,0] external internal With a distance between wall surfaces of each hollow chamber of at least 5 mm (refer to Figure D.1).

Thermal transmittances for plastic frames with metal reinforcements

Dimensions in millimetres

Combined effect of frame, window and spacer

 U_g can be applied to the central area of the window (only glass, not including spacers or frame. Frame transmittance, U_f , is calculated without the glazing element. The combined effect of the frame, window and spacer is considered in the thermal linear loss Ψ_g depending on the material of the spacer.

Junction effects

Values of linear thermal transmittance for common types of glazing spacer bars (e.g. aluminium or steel)

	Linear thermal transmittance for different types of glazing $\Psi_{\rm g}$			
Frame type	Double or triple glazing uncoated glass air- or gas-filled	Double ^a or triple ^b glazing low-emissivity glass air- or gas-filled		
Wood or PVC	0,06	0,08		
Metal with a thermal break	0,08	0,11		
Metal without a thermal break	0,02	0,05		
 One pane coated for double glaze Two panes coated for triple glazed 	d. 1.			

Calculation of the thermal transmittance

 $U_{w} = \frac{\text{Overall heat flux}}{\text{Overall surface of the window}}$

$$U_w = \frac{(U_g A_g + U_f A_f + I_g \Psi_g)}{(A_g + A_f)}$$