

Energy and buildings

Thermal calculation of thermal bridges in building constructions

Content

Thermal bridge
Objective of the lecture
Linear/point thermal transmittance
Simplified calculation method (former EN ISO 14683)
Heat conduction in solids
Detailed calculation method (EN ISO 10211)

Thermal bridge

Definition according to ISO 10211

Part of the building envelope where the otherwise uniform thermal resistance is significantly changed by

- full or partial penetration of the building envelope by **materials** with a different thermal conductivity;
- change in **thickness of the fabric** or **difference between internal and external areas** such as occur at wall/floor/ceiling junctions.

Thermal bridge

Example of penetration of the building envelope by **materials** with a different thermal conductivity: floor slab between ground and first floor of a residential building

Thermal bridge

Example of **difference between internal and external areas:** corner junction between external walls and penetration of a material with different thermal properties (reinforced concrete pillar).

Nodo d'angolo cassa vuota con camera d'aria (Ceccarelli, 2015)

Thermal bridge

Change of thermal resistance due to a discontinuity in the **materials** or **geometry** of the building envelope

Objective of this lecture

Evaluate the additional heat flow of thermal bridges using two methods:

- Simplified method (former EN ISO 14683)
- Detailed calculation method (ISO 10211)

In the Laboratory and for the report we will apply the **detailed calculation method** using a FEM software!

The heat loss coefficient can be used with any type of Δt between inside and outside (design temperature for heating or monthly average temperature

Thermal bridge

Thermal bridge

The local thermal transmittance corresponding to the thermal bridge can be evaluated either with a 2D or with a 3D geometrical model

Linear/point thermal transmittance

How to evaluate the impact of thermal bridges on the overall heat loss of the building ?

Linear/point thermal transmittance

Example: corner junction between external walls

$$H_T = \sum_i U_i A_i + \sum_j \Psi_j l_j$$

Length of the linear thermal bridge, *l* (m) depends on the building dimensions (specific to the building considered!)

Linear thermal transmittance, Ψ depends on the type of the thermal bridge \rightarrow 2D heat conduction problem on the cross-section!

Potential thermal bridges

Pre-calculated values of **linear thermal transmittance** Ψ for default thermal bridges

Reference length for the thermal bridge

Internal and external dimensions

- **internal dimensions**: measured between the finished internal faces of each room in a building (thus excluding the thickness of internal partitions);
- overall internal dimensions: measured between the finished internal faces of the external elements of the building (thus including the thickness of internal partitions);
- external dimensions: measured between the finished external faces of the external elements of the building.

Simplified method (former EN ISO 14683)

Linear thermal Window frame Slab/pillar Lightweight wall (including lightw walls) Insulating layer transmittance Ψ Default values of EN ISO 14683 300 ---- $\begin{array}{l} \Psi_{\rm g} = 1.20 \\ \Psi_{\rm d} = 1.20 \\ \Psi_{\rm f} = 1.20 \end{array}$ $\Psi_{0} = 0.90$ $\Psi_{0} = 0.90$ $\Psi_{1} = 0.90$ $\Psi_{e} = 1,30$ $\Psi_{ol} = 1,30$ $\Psi_{ol} = 1,30$ $\Psi_{1} = 1,30$ **Pillars** (P1..P4)

Simplified method (former EN ISO 14683)

Simplified method (former EN ISO 14683)

Simplified method (former EN ISO 14683)

Default values of linear thermal transmit ance (Continued) **Linear thermal** m: linear the Window frame Slab ip illar Lightweight wall (including lightweight masonry and timber frame walls) Insulating layer transmittance Ψ Default values of \boxtimes EN ISO 14683 বন্ধ ষ্ট $\begin{array}{l} arPsymbol{\varPsi}_{0}^{\prime}=0,10 \\ arPsymbol{\varPsi}_{0}^{\prime}=0,10 \\ arPsymbol{\varPsi}_{1}^{\prime}=0,10 \end{array}$ $\Psi_0 = 0.45$ $\Psi_0 = 0.45$ $\Psi_1 = 0.45$ Windows and door openings (W1..) $\Psi_{0} = 0.10$ $\Psi_{0} = 0.10$ $\Psi_{1} = 0.10$ $\Psi'_{0} = 0.00$ $\Psi'_{0} = 0.00$ $\Psi' = 0.00$

Overall heat loss

How can we calculated the overall heat loss?

- 1. Evaluate types of thermal bridge and lengths
- 2. The heat transmission coefficient ${\rm H}_{\rm T}$ to account for additional heat flow due to thermal bridge

$$H_T = \sum_i U_i A_i + \sum_j \Psi_j l_j$$

Possible calculation methods:

Expected accuracy

When selecting a particular method, its accuracy should reflect the accuracy required in calculating the overall heat transfer, taking into account the lengths of the linear thermal bridges. Possible methods for determining ψ include:

- numerical calculations (typical accuracy ±5%);
- thermal bridge catalogues (typical accuracy ±20%);
- default values (typical accuracy 0% to 50%)

Table A.2 of UNI EN ISO 14683 provides default values, calculated for parameters representing worst-case situations \rightarrow OVERRATE!

Fourier law + conservation of energy

$$\begin{cases} \vec{q} = -k \nabla T \\ q + \dot{q}_{v} = \rho c_{p} \frac{\partial T}{\partial t} \end{cases}$$
$$\frac{\partial}{\partial x} \left(k_{x} \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_{y} \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_{z} \frac{\partial T}{\partial z} \right) + \dot{q}_{v} = \rho c_{p} \frac{\partial T}{\partial t}$$

Heat conduction in solids

$$\frac{\partial}{\partial x} \left(k_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_z \frac{\partial T}{\partial z} \right) + \dot{q}_v = \rho c_p \frac{\partial T}{\partial t}$$

Assumption		Equation		
2D problem	$\frac{\partial T}{\partial z} = 0$	$\frac{\partial}{\partial x} \left(k_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial T}{\partial y} \right) + \dot{q} = \rho c_p \frac{\partial T}{\partial t}$		
no internal heat generation	$\dot{q}_{v} = 0$	$\frac{\partial}{\partial x} \left(k_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial T}{\partial y} \right) = \rho c_p \frac{\partial T}{\partial t}$		
steady-state	$\frac{\partial T}{\partial t} = 0$	$\frac{\partial}{\partial x} \left(k_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial T}{\partial y} \right) = 0$		

$$\frac{\partial}{\partial x} \left(k_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial T}{\partial y} \right) = 0$$

Equivalent thermal circuit for a composite wall (Incropera & DeWitt, 1981)

Heat conduction in solids

Analytical solution for 1D steady-state problem on a composite wall

Equivalent thermal circuit for a composite wall (Incropera & DeWitt, 1981)

ELECTRICAL ANALOGY (1) Fix temperature difference $(T_1 - T_2)$ \rightarrow find heat flow q_x

$$q_x = \frac{(T_1 - T_2)}{\sum_i R_i}$$

Analytical solution for 1D steady-state problem on a composite wall

Equivalent thermal circuit for a composite wall (Incropera & DeWitt, 1981)

ELECTRICAL ANALOGY (2) Fix one temperature and heat flow $q_x \rightarrow$ find other temperature

$$T_2 = T_1 - \frac{q_x}{\sum_i R_i}$$

Heat conduction in solids

Analytical solution for 1D steady-state problem on a composite wall

Equivalent thermal circuit for a composite wall (Incropera & DeWitt, 1981)

$\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \right)$	$k_x \frac{\partial T}{\partial x} = 0$
Input variables	Temperature
(boundary conditions)	of internal and external air $T_{\infty,1}, T_{\infty,4}$
Parameters	Physical and geometrical properties $h_1, h_4, L_A, k_A, L_B, k_B, L_C, k_C$
Output variable	$q_x = A \frac{\text{Heat flow rate}}{\frac{T_{\infty,1} - T_{\infty,4}}{\frac{1}{h_1} + \frac{L_A}{k_4} + \frac{L_B}{k_B} + \frac{L_C}{k_C} + \frac{1}{h_4}}}$

The same logic applies for the 2D problem:

- 1. Set physical and geometrical parameters;
- 2. Set boundary conditions (fixed temperature or heat flow rate);
- 3. Calculate the temperature distribution on the x-y plane with a <u>numerical method</u> T = T(x,y);
- 4. Calculate heat flow through the thermal bridge based on the temperature distribution.

Heat conduction in solids

Finite Element Methods (FEM)

• The domain is subdivided into a set (**mesh**) of triangular elements

Finite Element Methods (FEM)

- The domain is subdivided into a set (mesh) of triangular elements
- The temperature between adjacent nodes is set to be linearly dependent on the space variables *x* and *y*

$$T(x, y) = \alpha_1 + \alpha_2 x + \alpha_3 y$$

• The temperature distribution is expressed through so-called **shape functions**

$$T = N_i T_i + N_j T_j + N_k T_k = \begin{bmatrix} N_i & N_j & N_k \end{bmatrix} \begin{cases} T_i \\ T_j \\ T_k \end{cases}$$

Detailed method (EN ISO 10211)

Some free softwares for 2D/3D heat conduction problems

- FEMM 4.2 <u>http://www.femm.info/wiki/Download</u>
- THERM https://windows.lbl.gov/tools/therm/software-download
- QuickField https://quickfield.com/free_soft.htm (limited mesh size)
- .. and many other commercial softwares!

The FEMM 4.2 software is a **finite element** package for solving **2D planar** and axisymmetric magnetic, electrostatic, **steady-state heat conduction**, and current flow **problems**.

Detailed method (EN ISO 10211)

Thermal coupling coefficient

The thermal coupling coefficient $(L_{2D} \text{ or } L_{3D})$ is heat flow rate per temperature difference between two environments which are thermally connected by the construction under consideration.

$$L_{2D} = \frac{Q_{ie}}{l(T_i - T_e)}$$

Calculation of the linear thermal transmittance

- Evaluate temperature distribution with 2D/3D heat conduction calculation software on a section of the thermal bridge
- 2. Integrate temperature difference over normal surface to get the **heat flow rate per unit length** of the thermal bridge q_{ie} [W/m]

Detailed method (EN ISO 10211)

Calculation of the linear thermal transmittance

3. Calculate the **thermal coupling coefficient** of the thermal bridge

$$L_{2D} = \frac{q_{ie}}{(T_i - T_e)}$$

 Calculate the linear thermal transmittance (additional heat flow rate due to thermal bridge)

$$\Psi = L_{2D} - (U_x l_x + U_y l_y)$$

Geometrical model	Example	Method
2D		Linear thermal transmittance, Ψ (W/(m K)) Thermal coupling coefficient from 2D calculation, L_{2D} (W/(m K)) $\Psi = L_{2D} - \sum_{j=1}^{N_j} U_j l_j$
3D		Point thermal transmittance, χ (W/K) Thermal coupling coefficient from 3D calculation, L_{3D} (W/K) $\chi = L_{3D} - \sum_{i=1}^{N_i} U_i A_i - \sum_{j=1}^{N_j} \Psi_j l_j$

Calculation of the linear/point thermal transmittance

Detailed method (EN ISO 10211)

Steps for the calculation of the thermal bridge with FEMM 4.2:

- 1. Import geometry from a .dxf file
- 2. Set material properties for each building component
- 3. Set boundary conditions (internal and external temperature and surface heat transfer coefficients)
- 4. Create a mesh to discretize the domain
- 5. Run the FEM solver to calculate the temperature distribution
- 6. Assess thermal coupling coefficient (L_{2D}) and minimum surface temperature

Calculation of the 2D thermal coupling coefficient

Minimum distances of cut-off planes for 2D geometrical models is a function of envelope thickness

Detailed method (EN ISO 10211)

Cut-off planes in the ground

Detailed method (EN ISO 10211)

More than two boundary temperatures

The procedure is longer: one thermal coupling coefficient must be calculated for each of the mutual thermal connections between the environments.

$$q_{i,j} = L_{2D_{i,j}} (T_i - T_j)$$

$$q = \sum_{i < j} \left| q_{i,j} \right|$$

More than two boundary temperatures

Annex E provides a useful calculation example for a suspended floor with indoors (1), outdoor (2) and unheated space (3) with two options: with and without ventilation in the unheated space.

Detailed method (EN ISO 10211)

More than two boundary temperatures

Calculation number	θ _{int} (°C)	θ _u (°C)	θ _e (°C)
1	1	0	0
2	0	1	0
3	0	0	1

 $L_{iu} = 0.5 \ (L_1 - L_2 + L_3)$

$$L_{ie} = 0.5 \left(L_1 + L_2 - L_3 \right)$$

$$L_{ue,c} = 0.5 \ (L_2 + L_3 - L_1)$$

 $L_{ue} = L_{ue,c} + L_{ue,ve} = L_{ue,c} + \rho c_p \dot{V}$

 $\begin{cases} q = L_{iu}(\theta_{int} - \theta_u) + L_{ie}(\theta_{int} - \theta_e) \\ q = L_{2D}(\theta_{int} - \theta_e) \end{cases}$

 $L_{2D} = \frac{L_{iu}L_{ue}}{L_{iu} + L_{ue}} + L_{iu}$

More than two boundary temperatures

Detailed method (EN ISO 10211)

Example of temperature distribution

Full or partial penetration of the building envelope by **materials** with a different thermal conductivity: pre-fabricated sandwich panels for industrial buildings

Example of temperature distribution

Change in **thickness of the fabric** or **difference between internal and external areas:** wall junctions by concrete pillars.

Detailed method (EN ISO 10211)

Example of temperature distribution

Balcony without thermal insulation

Example of temperature distribution

Balcony without thermal insulation

Detailed method (EN ISO 10211)

Example of temperature distribution

Intermediate floor junctions

Example of temperature distribution

Intermediate floor junctions

Detailed method (EN ISO 10211)

Example of temperature distribution

Intermediate floor junctions

TRASMITTANZA parete verticale [W/m [*] K]	0,35
TRASMITTANZA solaio [W/m²K]	0,33
TRASMITTANZA terrazza [W/m ² K]	0,45

L2D = 0.973 W/(m K)

Ψi = 0.273 W/(m K) Ψe = 0.0735 W/(m K)

FRsi = 0.934

N	DESCRIZIONE STRATO dall'interno all'esterno	s [mm]	[W/mK]	[m ² K/W]	
1	adduttanza interna metà superiore della stanza	0	0	0,25	
2	intonaco ecologico	15	0.8	0.01875	
3	mattoni ad alta resistenza meccanica M.V.800	380	0,297	1,279461	
4	isolante a soffitto	50	0,024	2,083333	
5	adduttanza interna soffitto	0	0	0,108	
6	soletta in c.a. non esposto	290	1,16	0,25	
7	sotto fondo di ricoprimento	80	0,49	0,163265	
8	massetto per pannello radiante	90	0,52	0.173077	
9	pavimentazione	15	0,45	0,033333	
10	adduttanza interna del pavimento	0	0	0,172	
11	adduttanza interna metà inferiore della stanza	0	0	0,35	
12	cappotto isolante	50	0.04	1,25	
13	cappotto isolante	40	0.04	1	
14	soletta in c.a. non esposto	140	1,16	0,12069	
15	adduttanza esterna comune a tutte le pareti esterne	0	0	0.04	

Detailed method (EN ISO 10211)

References

Ceccarelli AF. Prontuario tecnico urbanistico amministrativo. Maggioli Ed. (2015).

Comini G, Del Giudice S, Nonino C. Finite element analysis in heat transfer: basic formulation and linear problems. Taylor and Francis (1994).

Incropera FP, DeWitt DP. Fundamentals of heat transfer. John Wiley & Sons (1981).

Meeker D. Finite Element Method Magnetics Version 4.2 - User's Manual (2018).

UNI EN ISO 14683:2017. Thermal bridges in building construction - Linear thermal transmittance – Simplified methods and default values (2017)

EN ISO 10211:2017. Thermal bridges in building construction - Heat flows and surface temperatures - Detailed calculations (2017).

UNI/TR 11552:2014. Abaco delle strutture costituenti l'involucro opaco degli edifici - Parametri termofisici (2014) *[Italian]*.