Calculation procedure for surface condensation

Output of the 2D calculation

The output of the 2D simulation is the temperature factor f_{RSi} .

The picture shows a thermal bridge due to the presence of different materials.

 $f_{RSi} = 0.74$

How can we correlate this minimum loical temperature with the surface condensation problems?

 $f_{RSi} = 0.74 = (\theta_{si} - \theta_e) / (\theta_i - \theta_e)$ Let's consider Milan in January with $\theta_{si} = 1.7^{\circ}C$

$$\theta_{si} = \theta_e + f_{RSi} * (\theta_i - \theta_e)$$

 $\theta_{si} = 1.7 + 0.74 * (20 - 1.7) = 15.2^{\circ}C$

$$\theta_{si} > \theta_{si,min}$$

Condensation does not occur

Two main observations:

1) Need to evaluate the indoor

conditions

2) Need for calculation procedure

ISO EN 13788

Example 1 – Calculation of the temperature factor – Use of the indoor humidity classes - UNI EN ISO 13788

Calculation of f_{RSi} for January. Location: Milan (climatic data UNI 10349)

 θ_e = 1.7°C; p_v=590 Pa θ_i = 20°C

Calculation of the indoor pressure p_v (considering Δp for dwellings with low vapour production, class 3/4

Considering Δp and the safety factor 1.1 according to UNI EN ISO 13788 the indoor pressure p_v :

p_i = p_e + ∆p = 590 + 740 * 1.1 = 1404 Pa

Minimum acceptable value for the saturation pressure and minimum surface temperature referred to local condition φ_{si} =0.8

Calculation of the minimum temperature factor: $f_{\text{RSi,min}} = (\theta_{\text{Si,min}} - \theta_{\text{e}}) / (\theta_{\text{i}} - \theta_{\text{e}}) = (15.5 - 1.7) / (20 - 1.7) = 0.754$

Example 2 – Calculation of the temperature factor – Use of constant indoor relative humidity - UNI EN ISO 13788

Calculation of f_{RSi} for January. Location: Milan (climatic data UNI 10349)

 θ_{e} = 1.7°C; p_v=590 Pa θ_{i} = 20°C; ϕ_{i} =50%

based on UNI EN ISO 13788

$$p_{\text{sat}} = 610,5e^{\frac{17,269}{237,3+9}}$$

per $\theta \ge 0$ °C

Calculation of $p_{sat}(\theta_i) = 2337 Pa$

Calculation of indoor partial vapour pressure (RH + 0.05 according to UNI EN ISO 13788):

 $p_i = \phi_i p_{sat} (\theta_i) = 0.55 * 2337 = 1285 Pa$

Minimum acceptable value for the saturation pressure and minimum surface temperature referred to local condition φ_{si} =0.8

$$p_{sat}(\theta_{si}) = p_i / 0.8 = 1285 / 0.8 = 1606.3 \text{ Pa} \rightarrow \theta_{si,min} = 14.08^{\circ}\text{C}$$

$$\theta = \frac{237,3 \log_e \left(\frac{\rho_{sat}}{610,5}\right)}{17,269 - \log_e \left(\frac{\rho_{sat}}{610,5}\right)} \quad \text{per } \rho_{sat} \ge 610,5 \text{ Pa}$$

Calculation of the minimum temperature factor:

 $f_{RSi,min} = (\theta_{Si,min} - \theta_e) / (\theta_i - \theta_e) = (14.08-1.7) / (20-1.7) = 0.677$

How to calculate the surface condensation problem:

- Calculate from January to December in an Excel the f_{Rsi, min}
- Verify whether there is or not condensation in each month $f_{Rsi} > f_{Rsi, min}$

	Month	1	2	3	4	5	6	7	8	9	10	11	12
External conditions	T_e (PD)	1.7	4	8.4	13	17.1	21.3	23.6	23.1	19.7	13.8	8.2	3.6
	p_e (PD)	590	652	809	1083	1388	1790	1929	1928	1718	1252	934	677
	p_e_sat	To be calculated											
	RH_e	To be calculated											
Internal conditions	T_i	20	20	20	20	20/26	26	26	26	20/26	20	20	20
	delta_p_v	To be evaluated based on the indoor humidity class											
	p_v_i	To be calculated											
	p_sat (q _{si})	p_sat at 80%											
	q _{Si.min}	To be calculated											
	f _{RSi.min}	To be calculated											
Surface	f _{RSi}	From thermal bridge											
condensatio	Internal												
n check	condensation	Yes/no	Yes/no	Yes/no	Yes/no	Yes/no	Yes/no	Yes/no	Yes/no	Yes/no	Yes/no	Yes/no	Yes/no