

Energy and buildings

Energy balance of a room

Building energy balance

The **building energy needs** depend on several overlapping physical phenomena:

- Heat conduction through the walls
- Heat convection and radiant heat exchange on internal and external surfaces
- Internal generation of heat due to people and appliances
- Solar radiation absorbed by opaque building components
- Solar radiation transmitted through glazed building components

Heat conduction through the envelope

Heat conduction is a heat transfer mechanism between two systems (either solids, liquids or gases) at different temperatures with no significant mass transfer and responds to the Fourier Law

$$\vec{q} = -k \nabla T$$

Heat transfer by convection

Thermal convection is a heat exchange mechanism that takes place between two systems placed **in contact with each other** and at different temperatures, where at least one of the two systems is **fluid**.

A necessary condition for this energy exchange to take place is that there is **relative motion** between the two systems.

$$q = h_c A (T_s - T_\infty)$$

Heat transfer by radiation

The **emissivity** $\boldsymbol{\varepsilon}$ of a material expresses the global emission E of that material relative to the global emission of a black body at the same temperature E_b .

$$q_{rad} = \varepsilon \, \sigma A_s (T_s^4 - T_{surr}^4)$$

Heat balance of the building envelope

Glazed building components Absorbed Incident solar solar radiation radiation Transmitted Reflected solar solar radiation Heat radiation M Convective heat exchange Convective heat exchange with indoor air with outdoor air Radiant heat exchange Radiant heat exchange with with the surroundings other internal surfaces and with the sky

Opaque building components

Heat balance of the building envelope

Opaque building components

Opaque building components: sol-air temperature

$$h_{c,e}(T_s - T_e) - \alpha f_{sh}I_s = h_{c,e}(T_s - T_{sol-air})$$
$$h_{c,e}(T_{sol-air} - T_e) = \alpha f_{sh}I_s$$
$$T_{sol-air} = T_e + \frac{\alpha f_{sh}I_s}{h_{c,e}}$$

Heat balance of the building envelope

Opaque building components: sol-air temperature

Opaque building components: sol-air temperature

Heat balance of the building envelope

Opaque building components: sol-air temperature

Radiant heat exchange between surfaces

Heat balance of the building envelope

Radiant heat exchange between surfaces

View factor F_{k-j} : fraction of the radiation that reaches directly the k-th surface from the j-th surface

$$F_{k-j} = \frac{1}{2\pi S_j} \iint_{S_k S_j} \left(\frac{\cos \varphi_k \cos \varphi_j}{d^2} \right) dS_k dS_j$$

$$q_{k-j} = A_k F_{k-j} \sigma \left(T_k^4 - T_j^4 \right) = A_j F_{j-k} \sigma \left(T_k^4 - T_j^4 \right)$$

Radiant heat exchange between surfaces

Charts with pre-calculated view factors F_{k-j} for given geometries of the mutual connections

Heat balance of the building envelope

Radiant heat exchange towards the sky

Thermal radiation to the sky

The radiant heat emission of the j-th outer surface of the building towards the sky can be expressed by:

$$q_{sky,j} = \varepsilon_j \sigma A_j F_{j-sky} (T_j^4 - T_{sky}^4)$$

The effective sky temperature T_{sky} can be calculated based on the local air temperature and relative humidity (Bliss, 1961)

Heat balance of the building envelope

Thermal radiation to the sky

 $q_{gnd,j} = \varepsilon_j \sigma A_j F_{j-gnd} (T_j^4 - T_{gnd}^4)$ $F_{j-sky} = \frac{1 - \cos\theta}{2}; F_{j-gnd} = 1 - F_{j-sky}$ $q_{gnd,j} + q_{sky,j} = \varepsilon_j \sigma A_j (..)$ $\frac{q_{gnd,j} + q_{sky,j}}{A_j} = \varepsilon_j \Delta R$

ASHRAE Handbook suggests $\Delta R = 63 W/m^2$

Opaque building components: sol-air temperature with thermal radiation to the sky

$$h_{c,e}(T_s - T_e) - \alpha f_{sh}I_s + \varepsilon \Delta R = h_{c,e}(T_s - T_{sol-a})$$

$$h_{c,e}(T_{sol-air} - T_e) = \alpha f_{sh}I_s - \varepsilon \Delta R$$

$$T_{sol-air} = T_e + \frac{\alpha f_{sh}I_s}{h_{c,e}} - \frac{\varepsilon \Delta R}{h_{c,e}}$$

Heat balance of the indoor air

- Convective heat exchange with internal surfaces of the building envelope q_{c.i}
- Convective heat exchange with internal heat sources such as lights and appliances q_{c,int}
- Convective heat exchange with HVAC system q_{c,p}
- Convective heat exchange due to ventilation and infiltration q_g

Heat exchange at the external surface (1)

Overall heat balance of the room

Heat exchange at the external surface (1)

 $-h_{ce,k}S_k(T_{se,k}-T_{sol,air}) + q_{cond} = 0$

2 Heat conduction Q_{c,i} Q

Heat conduction through the building components (2)

Heat exchange at the internal surface (3)

Overall heat balance of the room

Heat exchange at the internal surface (3)

Heat exchange at the internal surface (3)

Heat exchange with the internal air volume (4)

Overall heat balance of the room

Main assumptions

- Indoor air stratification neglected (single air node)
- Steady-state heat conduction through the walls
- Uniform distribution of the radiation in the room (solar, mutual and from internal sources)

Main assumptions

- Indoor air stratification neglected (single air node)
- Uniform distribution of the radiation in the room (solar, mutual and from internal sources)
- $f_{int,c}$ is the convective fraction of internal heat gains
- $f_{p,c}$ is the convective fraction of heat emitted by the HVAC system

$$-h_{ce,k}S_k (T_{se,k} - T_{sol,air}) + Sk \cdot f (T_{si,k} - T_{se,k}) = 0$$

$$-S_k \cdot f (T_{si,k} - T_{se,k}) + q_{c,i,k} + q_{sol,k} + (1 - f_{int,c})q_{int,k} + (1 - f_{p,c}) q_{p,k} - q_{r,k} = 0$$

$$-q_{c,i,k} + f_{int,c} q_{in,k} + f_{p,c} q_{p,k} + \dot{m}_a c_{p,a} (T_e - T_a) = \rho_a V_a c_{p,a} \frac{dT_a}{dt}$$

Overall heat balance of the room

Vapour mass balance

Example Analyze and semplify the problem An example: the hall of a congress palace

40

Simplified model

Example of a balance

$$(1) \quad \frac{(t_f - t_w)}{R_{Floor}} + h_R(t_f - t_{CeD}) + h_{CD}(t_f - t_a) = q_I + I_t$$

$$(2) \quad h_{CD}(t_a - t_f) + \frac{G_a c_p}{S_f} \cdot (t_a - t_{a,in}) + h_{CU}(t_a - t_{CeD}) = q_p + q_{c,int}$$

$$(3) \quad h_R(t_{CeD} - t_f) + h_{CU}(t_{CeD} - t_a) + \frac{(t_{CeD} - t_{CeU})}{R_{Ceil}} = \frac{I_a}{2}$$

(3)
$$h_R(t_{ceD} - t_f) + h_{CU}(t_{CeD} - t_a) + \frac{(t_{ceD} - t_{ceU})}{R_{ceil}} = \frac{1}{2}$$

(4)
$$\frac{(t_{ceU} - t_{ceD})}{R_{ceil}} + h_e(t_{ceU} - t_{amb}) = \frac{I_a}{2}$$

$$\begin{cases} \frac{1}{R_{floor}} + h_{CD} + h_R & -h_{CD} & -h_R & 0 \\ -h_{CD} & \frac{G_a c_p}{S_f} + h_{CD} + h_{CU} & -h_{CU} & 0 \\ -h_R & -h_{CU} & h_R + h_{CU} + \frac{1}{R_{ceil}} & -\frac{1}{R_{ceil}} \\ 0 & 0 & -\frac{1}{R_{ceil}} & \frac{1}{R_{ceil}} + h_{ext} \\ \end{cases} .$$

$$\cdot \begin{bmatrix} t_f \\ t_a \\ t_{ceD} \\ t_{ceU} \end{bmatrix} = \begin{cases} q_l + I_t + \frac{t_w}{R_{floor}} \\ q_p + q_{c,int} + \frac{G_a c_p}{S_f} t_{a,in} \\ \frac{I_a}{2} \\ \frac{I_a}{2} + h_{ext} t_{amb} \\ \end{bmatrix}$$

References

EN ISO 13790:2008. Energy performance of buildings - Calculation of energy use for space heating and cooling.

Michele De Carli, Simulation and numerical methods. Energy modeling for buildings and components. Budapest: TERC, 2013.

Underwood C.P., Yik F.W.H. Modelling methods for energy in buildings. Blackwell Science. 2004. Available online at https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470758533

Karagiozis A.N., KÜnzel H.M., Holm A. WUFI-ORNL/IBP—A North American Hygrothermal Model. <u>https://wufi.de/literatur/Karagiozis,%20K%C3%BCnzel%20et%20al%20-%20WUFI-</u> <u>ORNL%20IBPA%20North%20American%20Hygrothermal%20Model.pdf</u>