Differential Equations of order greater than 1 Systems of differential equations

Padova, Marmber 1876

Steady states and stability

KORKA SERKER ORA

Differential Equations of order greater than 1 Systems of differential equations

Definition (Equilibrium)

Given a *n*-dimensional first order system of differential equations

$$
\dot{\mathbf{y}} = F(\mathbf{y})
$$

We say that y^* is an asymptotically stable equilibrium if every solution $y(t)$ which starts near y^* converges to y^* as $t \rightarrow \infty$.

SS steady state \equiv stationary solution \equiv rest point

KORK ERKER ADE YOUR

Stable equilibria

Differential Equations of order greater than₁ Systems of differential equations

Definition ((locally) asymptotically stable)

A steady state solution y^* of the system $\dot{y} = F(y)$ is called **(locally) asymptotically stable** if any solution $y(t)$ which starts near y^* converges to y^* as $t \to \infty$.

Definition (globally asymptotically stable)

A steady state solution y^* of the system $\dot{y} = F(y)$ is called globally asymptotically stable if just about every solution of $\dot{y} = F(y)$ tends to y^* as $t \to \infty$. \dot{y}^*

Definition (neutrally stable)

A steady state solution y^* of the system $\dot{y} = F(y)$ is called neutrally stable if it is not locally asymptotically stable and if all solutions which start close enough to y^* stay close to y^* as $t \rightarrow \infty$.

Stability of Linear Systems of ODE

Differential Equations of order greater than 1 Systems of differential equations

 $\sqrt{2}$

$$
\dot{\mathbf{x}}(t) = A\mathbf{x}(t)
$$

Endervalgare The general solution is $C(t) = c_1 e^{\lambda_1 t} w_1 + c_2 e^{\lambda_2 t} w_2 + ... + c_n e^{\lambda_n t} w_n$

The constant solution $x = 0$ is always a steady state (SS) of the linear system of ODES $\dot{\mathbf{x}}(t) = A\mathbf{x}(t)$

Stability of Linear Systems of ODE

Differential Equations of order greater than 1 Systems of differential equations

Theorem

- *If every real eigenvalue of A is negative (every complex eigenvalue of A has negative real part), then* $x = 0$ *is a* globally asymptotic stable *SS: every solution tends to* 0 *as* $t \rightarrow \infty$ ery real eigenvalue

mvalue of A has ne
 mptotic stable SS

has a positive real

tive real part), the

v solution moves a
- *If A has a positive real eigenvalue (or a complex eigenvalue with positive real part), then* x = 0 *is an* unstable *SS: just about every solution moves away from the origin as* $t \to \infty$
- *If A has a zero eigenvalue (or a purely imaginary eigenvalue) that does not have a complete set of independent eigenvectors, then* $x = 0$ *is an* unstable *SS: just about every solution moves away from the origin as* $t \rightarrow \infty$ Linear Systems of ODE

al eigenvalue of A is negative (every complex

of A has negative real part), then $x = 0$ is a global

c stable SS: every solution tends to 0 as $t \rightarrow \infty$

stable SS: every solution tends to 0 as $t \rightarrow$
- *If A has a zero eigenvalue (or a purely imaginary eigenvalue), if all such eigenvalues have a complete set of independent eigenvectors, and if all the other eigenvalues are negative (or negative part), then* $x = 0$ *is a* neutrally stable *SS*. Stability of Linear Systems of ODE

Theorem

• If every real eigenvalue of A is negative (every complex

eigenvalue of A has negative real part), then $x = 0$ is a

asymptotic stable SS: every solution tends to 0 as $t \rightarrow$

Local Stability of NonLinear differential equation

Differential Equations of order greater than 1 Systems of differential equations

Given the **autonomous** differential equation

$$
\dot{y}(t) = f(y)
$$

Definition ((locally) asymptotically stable)

A steady state solution y^* is called (locally) asymptotically $\textsf{stable}\,\, \text{if any solution}\,\, f(\textbf{y}^*) = 0\,\, \text{and}\,\, f'(\textbf{y}^*) < 0.$

Definition (unstable)

A steady state solution y^* is called **unstable** if any solution $f(y^*) = 0$ and $f'(y^*) > 0$.

KORK ERKER ADE YOUR

Local Stability of NonLinear Systems of ODE

Differential Equations of order greater than 1 Systems of differential equations

Theorem (Sufficient conditions)

Given the autonomous *NonLinear System*

$$
x = x^2y + 3 = F_1 \t y(t) = F(y) = \begin{bmatrix} x^2y + 3 \\ 8x^2y + x \end{bmatrix} = 0
$$

- *If each eigenvalue of the jacobian matrix DF* **(y^{*})** *of**F**is negative (or has negative real part), then* y^* *is a (local) asymptotic stable SS.*
- *If* $DF(y^*)$ has at least one positive real eigenvalue (or one *with positive real part), then* y^* *is an unstable SS.*

KORK ERKER ADE YOUR

Differential Equations of order greater than 1 Systems of differential equations

Given the following System of ODEs

$$
\begin{cases}\n\dot{x} = 2x = 0 \\
\dot{y} = -2y = 0\n\end{cases}
$$
 Steady state(0, 0).

The jacobian is

$$
\begin{pmatrix}\n\sqrt{5}x \\
\sqrt{7}x\n\end{pmatrix} = DF = \begin{pmatrix} 2 & 0 \\
0 & -2 \end{pmatrix} = \begin{pmatrix} \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} \\
\frac{\partial F_2}{\partial x} & \frac{\partial F_1}{\partial y} \\
\frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} \\
\frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} \\
\frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} \\
\frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} \\
\frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} \\
\frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} \\
\frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} \\
\frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} \\
\frac{\partial F_2}{\partial x} & \frac{\partial F_1}{\partial y}
$$

Differential Equations of order greater than 1 Systems of differential equations

Given the following System of ODEs

$$
\begin{cases} \n\dot{x} = -2x - \Omega \\ \n\dot{y} = -2y - \Omega \n\end{cases}
$$
 Steady state(0,0).

The jacobian is

Differential Equations of order greater than 1 Systems of differential equations

Differential Equations of order greater than 1 Systems of differential equations

Given the following System of ODEs

$$
\begin{cases} \n\dot{x} = \underline{x}(4 - x - y) = 0 \\
\dot{y} = \underline{y}(6 - y - 3x) = 0\n\end{cases}
$$

 $\mathbf{A} \equiv \mathbf{A} + \math$

 2990

The jacobian is

$$
DF = \left(\begin{array}{cc}4-2x-y & -x\\-3y & 6-2y-3x\end{array}\right)
$$

Vector fields

Differential Equations of order greater than 1 Systems of differential equations

For any point of the plane (x, y) draw the vectors (\dot{x}, \dot{y})

$$
\begin{cases} \n\dot{x} = x(4 - x - y) \\ \n\dot{y} = y(6 - y - 3x) \n\end{cases}
$$

$$
(x, y) \mid (x, y)
$$

\n
$$
(1, 0) \rightarrow (3, 0)
$$

\n
$$
(0, 1) \rightarrow (0, 5)
$$

\n
$$
(1, 1) \rightarrow (2, 2)
$$

\n
$$
(3, 3) \rightarrow (-6, -18)
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Phase portraits - phase diagram

