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Definition (Equilibrium)

Given a n�dimensional first order system of di↵erential

equations

ẏ = F (y)

We say that y
⇤
is an asymptotically stable equilibrium if

every solution y(t) which starts near y
⇤
converges to y

⇤
as

t ! •.

steady state ⌘ stationary solution ⌘ rest pointSs
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Stable equilibria

Definition ((locally) asymptotically stable)

A steady state solution y
⇤
of the system ẏ = F (y) is called

(locally) asymptotically stable if any solution y(t) which
starts near y

⇤
converges to y

⇤
as t ! •.

Definition (globally asymptotically stable)

A steady state solution y
⇤
of the system ẏ = F (y) is called

globally asymptotically stable if just about every solution of

ẏ = F (y) tends to y
⇤
as t ! •.

Definition (neutrally stable)

A steady state solution y
⇤
of the system ẏ = F (y) is called

neutrally stable if it is not locally asymptotically stable and if

all solutions which start close enough to y
⇤
stay close to y

⇤
as

t ! •.

si=-y
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Stability of Linear Systems of ODE

Given the Linear System

ẋ(t) = Ax(t)

The general solution is

c(t) = c1e
l1tw1 + c2e

l2tw2 + ...+ cne
lntwn

The constant solution x = 0 is always a steady state (SS) of

the linear system of ODES ẋ(t) = Ax(t)

µ

✓
.

ti eigenvrlaes

-

Lett - tra CinefiloÉTÉ



Di↵erential
Equations of
order greater

than 1
Systems of
di↵erential
equations

Stability of Linear Systems of ODE

Theorem

If every real eigenvalue of A is negative (every complex

eigenvalue of A has negative real part), then x = 0 is a globally

asymptotic stable SS: every solution tends to 0 as t ! •

If A has a positive real eigenvalue (or a complex eigenvalue with

positive real part), then x = 0 is an unstable SS: just about

every solution moves away from the origin as t ! •

If A has a zero eigenvalue (or a purely imaginary eigenvalue)

that does not have a complete set of independent eigenvectors,

then x = 0 is an unstable SS: just about every solution moves

away from the origin as t ! •

If A has a zero eigenvalue (or a purely imaginary eigenvalue), if

all such eigenvalues have a complete set of independent

eigenvectors, and if all the other eigenvalues are negative (or

negative part), then x = 0 is a neutrally stable SS.

È
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Local Stability of NonLinear di↵erential equation

Given the autonomous di↵erential equation

ẏ(t) = f (y)

Definition ((locally) asymptotically stable)

A steady state solution y
⇤
is called (locally) asymptotically

stable if any solution f (y⇤) = 0 and f
0(y⇤) < 0.

Definition (unstable)

A steady state solution y
⇤
is called unstable if any solution

f (y⇤) = 0 and f
0(y⇤) > 0.
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Local Stability of NonLinear Systems of ODE

Theorem (Su�cient conditions)

Given the autonomous NonLinear System

ẏ(t) = F (y)

If each eigenvalue of the jacobian matrix DF (y⇤) of F is

negative (or has negative real part), then y
⇤
is a (local)

asymptotic stable SS.

If DF (y⇤) has at least one positive real eigenvalue (or one

with positive real part), then y
⇤
is an unstable SS.
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Example

Given the following System of ODEs

⇢
ẋ = 2x

ẏ = �2y
Steady state(0, 0).

The jacobian is

DF =

✓
2 0

0 �2
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Example

Given the following System of ODEs

⇢
ẋ = �2x

ẏ = �2y
Steady state(0, 0).

The jacobian is
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Example

Given the following System of ODEs

⇢
ẋ = x

2 + y
2

ẏ = 1
NO Steady states
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Example

Given the following System of ODEs

⇢
ẋ = x(4� x � y)
ẏ = y(6� y � 3x)

The jacobian is

DF =

✓
4� 2x � y �x

�3y 6� 2y � 3x
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Vector fields

For any point of the plane (x , y) draw the vectors (ẋ , ẏ)

⇢
ẋ = x(4� x � y)
ẏ = y(6� y � 3x)

(x , y) | (ẋ , ẏ)

(1, 0) ! (3, 0)

(0, 1) ! (0, 5)

(1, 1) ! (2, 2)

(3, 3) ! (�6,�18)
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Phase portraits - phase diagram
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