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y=Fl(y)
We say that y* is an asymptotically stable equilibrium if
every solution y(t) which starts near y* converges to y* as
t — oo. )

SS steady state = stationary solution = rest point
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Stable equilibria

Definition ((locally) asymptotically stable)

A steady state solution y* of the system y = F(y) is called
(locally) asymptotically stable if any solution y(t) which
starts near y* converges to y* as t — oo.

A

Definition (globally asymptotically stable)

A steady state solution y* of the system y = F(y) is called
globally asymptotically stable if just about every solution of

y = F(y) tends to y* as t — c0. ¥="94 "j: % R

Definition (neutrally stable)

A steady state solution y* of the system y = F(y) is called
neutrally stable if it is not locally asymptotically stable and if
all solutions which start close enough to y* stay close to y* as
t — oo.
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Stability of Linear Systems of ODE
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Given the Linear System
x(t) = Ax(t)
The general solution ls/ > Q‘@Q&Q}

x(t) = cieMiwg + ce™twy + .+ cpetiw,

————

The constant solution_x = 0 is always a steady state (SS) of
the linear system of ODES x(t) =

\sss © ++co
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Stability of Linear Systems of ODE
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Equations of Theorem
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han 1 - o .

Sytst:r”“s & @ If every real eigenvalue of A is negative (every complex

dilieense eigenvalue of A has negative real part), then x = 0 is a globally

equations
asymptotlc stable SS: every solution tends to 0 as t — oo

o IfA haSv“QOSItIVQ real eigenvalue (or a complex eigenvalue with
positive real part), then x = 0 is an unstable SS: just about
every solution moves away from the origin as t — oo

@ If A has a zero eigenvalue (or a purely imaginary eigenvalue)
that does not have a complete set of independent eigenvectors,
then x = 0 is an unstable SS: just about every solution moves
away from the origin as t — oo

@ If A has a zero eigenvalue (or a purely imaginary eigenvalue), if
all such eigenvalues have a complete set of independent
eigenvectors, and if all the other eigenvalues are negative (or
negative part), then x = 0 is a neutrally stable SS.




Local Stability of NonLinear differential equation
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Definition ((locally) asymptotically stable)

A steady state solution y* is called (locally) asymptotically
stable if any solution f(y*) =0 and f'(y*) < 0.

Definition (unstable)

A steady state solution y* is called unstable if any solution
f(y*) =0and f'(y*) > 0.
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Local Stability of NonLinear Systems of ODE

Theorem (Sufficient conditions)

Given the autonomous NonLinear System

):(= i\é\—&:ﬁ y( _ F R %\-3 _0
%’:QM‘&\-’(:F:_ \t-\-x (®)

o If.each eigenvalue of the jacobian matrix DF (y*) of F is
negative (or has negative real part), then y* is a (local)
asymptotic stable SS.

o If DF(y*) has at least one positive real eigenvalue (or one
with positive real part), theny* is-an unstable SS.
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than 1
Systems of

differential { X=-2x=O

equations . Stead state 0, 0 .
q y=-2y-o y ( )

The jacobian is
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el x=x(4—x—-y) 2O
equations y — y(6 —y— 3X) - O
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The jacobian is
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Vector fields

Differential

Equations of ) L.

SETl  For any point of the plane (x,y) draw the vectors (X, y)
than 1

Systems of

dfontal { %= x(4—x—y)
y=y(6—y—3x)

(xy) | (%)
(1,0) — (3,0)
(0,1) — (0,5
(1,1) = (2,2
(3,3) — (—6,—18)
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Phase portraits - phase diagram




