
Fundamentals of Mathematical Analysis 2 — MENG, ENSTP Yaounde
AY 2022/23 — Partial Exam (First Part on 40/100)

Exercise 1. Let
𝑓 (𝑥, 𝑦) := (𝑥2 + 𝑦2)3 − 𝑥4 + 𝑦4, (𝑥, 𝑦) ∈ R2.

i) Compute, if it exists, lim(𝑥,𝑦)→∞2 𝑓 (𝑥, 𝑦).
ii) Discuss existence of min/max of 𝑓 on R2 and find the eventual min/max points of 𝑓 . What about 𝑓 (R2)?

Exercise 2. Let
𝐷 :=

{
(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 + 𝑧2 = 1 + 𝑥𝑦

}
.

i) Show that 𝐷 ≠ ∅ is the zero set of a submersion.
ii) Is 𝐷 compact?

iii) Determine, if any, points of 𝐷 at min/max distance to ®0.
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Partial Exam (First Part on 40/100)

Exercise 3. Let 𝐷 := {(𝑥, 𝑦) ∈ R2 : 0 ⩽ 𝑦 ⩽ 1 − |𝑥 |} and 𝑓 (𝑥, 𝑦) := 2𝑥𝑦 − 2𝑥3 − 𝑦3.
i) Draw 𝐷 and determine whether it is compact or not.

ii) Discuss the problem of searching for min/max of 𝑓 on 𝐷.

Exercise 4. Let
𝐷 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 − 𝑧2 = 1, 𝑦2 + 𝑧 = 1}.

i) Show that 𝐷 ≠ ∅ is the zero set of a submersion (𝑔1, 𝑔2).
ii) Is 𝐷 compact?

iii) Determine, if any, points of 𝐷 at min/max distance to ®0.
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Partial Exam (First Part on 40/100)

Exercise 5. Let
𝑓 (𝑥, 𝑦) := 𝑥4 + 𝑦4 − 2(𝑥 − 𝑦)2, (𝑥, 𝑦) ∈ R2.

i) Compute, if it exists, lim(𝑥,𝑦)→∞2 𝑓 (𝑥, 𝑦).
ii) Find and classify the stationary points of 𝑓 on R2.

iii) Discuss existence of min/max of 𝑓 on R2 and find the eventual min/max points of 𝑓 . What about 𝑓 (R2)?

Exercise 6. Let
𝐷 :=

{
(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 = 𝑧2, 𝑦2 + (𝑧 − 2)2 = 1

}
.

i) Show that 𝐷 ≠ ∅ and it is the zeroes set of a submersion.
ii) Is 𝐷 compact? Justify carefully.

iii) Find points of 𝐷 (if any) at min/max distance to ®0.
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Partial Exam (First Part on 40/100)

Exercise 7. Let
𝑓 (𝑥, 𝑦, 𝑧) := (𝑥2 + 𝑦2 + 𝑧2)2 − 𝑥2 + 𝑦2, (𝑥, 𝑦) ∈ R2.

i) Compute, if it exists, lim(𝑥,𝑦,𝑧)→∞3 𝑓 (𝑥, 𝑦, 𝑧).
ii) Find and classify the stationary points of 𝑓 on R3.

iii) Discuss the problem to find min/max of 𝑓 on R3. What about 𝑓 (R3)?

Exercise 8. Let 𝐷 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 − 𝑧2 = 1, 𝑥 + 𝑦 + 2𝑧 = 0}.
i) Prove that 𝐷 ≠ ∅ and 𝐷 is the set of zeroes of a submersion on 𝐷.

ii) Is 𝐷 compact? Justify carefully your answer.
iii) Find points on 𝐷 at minimum and at maximum distance to 𝑧 axis.
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Partial Exam (First Part on 40/100)

Exercise 9. Let
𝐷 := {(𝑥, 𝑦) ∈ R2 : 0 ⩽ 𝑥 ⩽ 2, 0 ⩽ 𝑦 ⩽ 2𝑥}, 𝑓 (𝑥, 𝑦) := 𝑥3 + 𝑦3 − 3𝑥𝑦.

i) Draw 𝐷. Is 𝐷 open? Closed? Bounded? Compact? Connected? Justify your answer.
ii) Determine (if any) min/max of 𝑓 on 𝐷. Determine 𝑓 (𝐷), the image of 𝐷 through 𝑓 .

Exercise 10. Let
𝐷 :=

{
(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 − 𝑦2 + 3𝑧2 = 2, 𝑥2 + 𝑦2 − 𝑧2 − 4𝑥 = 0

}
.

i) Show that 𝐷 ≠ ∅ is the zero set of a submersion.
ii) Is 𝐷 compact? Justify your answer.

iii) Determine
max

(𝑥,𝑦,𝑧) ∈𝐷
𝑦.
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Partial Exam (Second Part on 60/100)

Exercise 11. Solve the Cauchy problem 
𝑦′ =

𝑦2 − 4
𝑡

,

𝑦(1) = 0.

Exercise 12. Let
𝐷 :=

{
(𝑥, 𝑦, 𝑧) ∈ R3 : (𝑥2 + 𝑦2)1/4 ⩽ 𝑧 ⩽ 2 − 𝑥2 − 𝑦2

}
.

i) Draw 𝐷 ∩ {𝑥 = 0} and deduce a figure for 𝐷.
ii) Compute the volume of 𝐷.

iii) Compute the outward flux from 𝐷 of the vector field ®𝐹 = (2𝑥, 2𝑦, 1), determining, in particular, the
component of this flux on 𝐷 ∩ {𝑧 = 2 − 𝑥2 − 𝑦2}.

Exercise 13. Compute the area of the surface
𝑆 :=

{
(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑧4 = 𝑥2 + 𝑦2, 0 ⩽ 𝑧 ⩽ 1

}
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Partial Exam (Second Part on 60/100)

Exercise 14. Consider the equation

𝑦′ =
𝑒𝑦 − 1

𝑡
, 𝑡 ≠ 0.

i) Determine the general integral.
ii) Determine the solution of the Cauchy problem 𝑦(1) = −1.

Exercise 15. Let 𝐷 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 + 2𝑦2 ⩽ 𝑧 ⩽ 4 − 3(𝑥2 + 2𝑦2)}.
i) Draw the set 𝐷 into the space. Someone says: ”𝐷 is a rotation volume with respect to the 𝑧−axis”. Is it

true or false?
ii) Compute the volume of 𝐷.

iii) Let ®𝐹 := (4𝑥𝑧,−𝑦2, 𝑦𝑧). Compute the outgoing flux of ®𝐹 by 𝐷, determining in particular the components
of the flow through the part of 𝜕𝐷 on the surfaces 𝑧 = 𝑥2 + 2𝑦2 and 𝑧 = 4 − 3(𝑥2 + 2𝑦2).

Exercise 16. Compute the area of the surface 𝑆 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑧 = 𝑥2 + 2𝑦2, 0 ⩽ 𝑧 ⩽ 1}.
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Partial Exam (Second Part on 60/100)

Exercise 17. Consider the second order equation
𝑦′′ − 2𝑦′ + 𝑦 = 𝑒2𝑡 .

i) Determine the general integral.
ii) Solve the Cauchy problem 𝑦(0) = 1, 𝑦′ (0) = 0.

iii) For which 𝑎 ∈ R there exists a solution such that 𝑦(0) = 0 and 𝑦(1) = 𝑎?

Exercise 18. Let 𝐷 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 + 𝑧2 ⩽ 4, 𝑧 ⩾ 1 − (𝑥2 + 𝑦2), 𝑧 ⩾ 0}.
i) Describe and draw 𝐷.

ii) Compute the volume of 𝐷
iii) Compute the outward flux by 𝐷 of the vector field ®𝐹 = (𝑥 + 𝑦, 𝑦 + 𝑧, 𝑧 + 𝑥), determining, in particular, its

component through 𝜕𝐷 ∩ {𝑥2 + 𝑦2 + 𝑧2 = 4}.

Exercise 19. Compute the area of the surface 𝑆 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥 = 4 − (𝑦2 + 𝑧2), 1 ⩽ 𝑥 ⩽ 2}.
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Partial Exam (Second Part on 60/100)

Exercise 20. Determine the general solution of the equation
𝑦′ = 𝑦 − 𝑦2.

Is it true or false that
lim

𝑡→+∞
𝑦(𝑡) ∈ R, ∀𝑦 solution?

Justify your answer.

Exercise 21. Let 𝐷 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 1 − (𝑥2 + 𝑦2) ⩽ 𝑧 ⩽
√︁

1 − (𝑥2 + 𝑦2)}.
i) Draw 𝐷.

ii) Compute the volume of 𝐷.
iii) Let ®𝐹 = (𝑥, 𝑦, 𝑧). Determine the flux of ®𝐹 through 𝐷 ∩ {𝑧 = 1− (𝑥2 + 𝑦2)} with the normal pointing to the

exterior of 𝐷.

Exercise 22. Compute the area of the surface 𝑆 := {(𝑥, 𝑦, 𝑧(∈ R3 : 𝑧 =
√︁
𝑥2 + 𝑦2, 𝑎 ⩽ 𝑧 ⩽ 𝑏}, where 0 < 𝑎 < 𝑏

are fixed constants.
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Solutions

Exercise 1. i) To compute the limit we write 𝑓 in polar coordinates:

𝑓 (𝑥, 𝑦) = (𝜌2)3 − 𝜌4 (cos \)4 + 𝜌4 (sin \)4 ⩾ 𝜌6 − 𝜌4 (cos \)4 ⩾ 𝜌6 − 𝜌4 −→ +∞,

when 𝜌 = ∥(𝑥, 𝑦)∥ −→ +∞. We conclude that ∃ lim(𝑥,𝑦)→∞2 𝑓 = +∞.

ii) By i) and since 𝑓 ∈ 𝒞(R2), we have that there is no max for 𝑓 on R2 while there is min 𝑓 . Let (𝑥, 𝑦) ∈ R2 be
a min point. Since (𝑥, 𝑦) ∈ R2 = Int(R2), according to Fermat theorem, ∇ 𝑓 (𝑥, 𝑦) = ®0. Now,

∇ 𝑓 (𝑥, 𝑦) = ®0, ⇐⇒


3(𝑥2 + 𝑦2)22𝑥 − 4𝑥3 = 0,

3(𝑥2 + 𝑦2)22𝑦 + 4𝑦3 = 0.
⇐⇒


𝑥
(
3(𝑥2 + 𝑦2)2 − 2𝑥2) = 0,

𝑦
(
3(𝑥2 + 𝑦2)2 + 2𝑦2) = 0.

The second equation leads to the alternative 𝑦 = 0 or 3(𝑥2 + 𝑦2)2 + 2𝑦2 = 0. In the first case, the first equation
becomes

𝑥(3𝑥4 − 2𝑥2) = 0, ⇐⇒ 𝑥3 (3𝑥2 − 2) = 0, ⇐⇒ 𝑥 = 0, ∨ 𝑥 = ±
√︂

2
3
.

Thus we get stationary points (0, 0) and
(
±
√︃

2
3 , 0

)
. In the second case, we get 𝑥 = 𝑦 = 0, that is again point (0, 0).

Conclusion: min point for 𝑓 is among (0, 0) and
(
±
√︃

2
3 , 0

)
. Since 𝑓 (0, 0) = 0 while 𝑓

(
±
√︃

2
3 , 0

)
= 8

27 − 4
9 =

− 4
27 < 0 we conclude that

(
±
√︃

2
3 , 0

)
are the global minimum points for 𝑓 on R2.

Last question: since R2 is connected, 𝑓 (R2) is an interval, and because of i) and previous discussion on min for
𝑓 we have 𝑓 (R2) =

[
− 4

27 , +∞
[
. □

Exercise 2. i) For instance (0, 0, 𝑧) ∈ 𝐷 iff 𝑧2 = 1, thus (0, 0,±1) ∈ 𝐷 and 𝐷 ≠ ∅. 𝐷 is also the zero set of
𝑔(𝑥, 𝑦, 𝑧) := 𝑥2 + 𝑦2 + 𝑧2 − 𝑥𝑦 − 1. This is a submersion on 𝐷 iff

∇𝑔 ≠ ®0, on 𝐷.

We have

∇𝑔 = ®0, ⇐⇒


2𝑥 − 𝑦 = 0,
2𝑦 − 𝑥 = 0,
2𝑧 = 0,

⇐⇒ (𝑥, 𝑦, 𝑧) = (0, 0, 0) ∉ 𝐷,

from which it follows that 𝑔 is a submersion on 𝐷.
ii) Certainly, 𝐷 = {𝑔 = 0} is closed (𝑔 ∈ 𝒞). Is it also bounded? We may see this by using spherical coordinates:

𝑥 = 𝜌 cos \ sin 𝜑,

𝑦 = 𝜌 sin \ sin 𝜑,

𝑧 = 𝜌 cos 𝜑.
𝜌2 = 𝑥2 + 𝑦2 + 𝑧2 = ∥(𝑥, 𝑦, 𝑧)∥2.

Then, if (𝑥, 𝑦, 𝑧) ∈ 𝐷 we have

𝜌2 = 1 + 𝜌2 cos \ sin \ (sin 𝜑)2 = 1 + 1
2
𝜌2 sin(2\) (sin 𝜑)2 ⩽ 1 + 𝜌2

2
,

from which
𝜌2

2
⩽ 1, ⇐⇒ 𝜌2 = ∥(𝑥, 𝑦, 𝑧)∥2 ⩽ 2.

Thus, 𝐷 is bounded, hence compact.
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iii) We have to minimize/maximize 𝑓 (𝑥, 𝑦, 𝑧) =
√︁
𝑥2 + 𝑦2 + 𝑧2 or, which is equivalent (same min/max points),

𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2. According to i), we are in condition to apply Lagrange multipliers theorem. According
to this result, at min/max points (𝑥, 𝑦, 𝑧) ∈ 𝐷 we have

∇ 𝑓 = _∇𝑔, ⇐⇒ rk

∇ 𝑓 (𝑥, 𝑦, 𝑧)

∇𝑔(𝑥, 𝑦, 𝑧)

 = rk


2𝑥 2𝑦 2𝑧

2𝑥 − 𝑦 2𝑦 − 𝑥 2𝑧

 < 2.

This happens iff all 2 × 2 subdeterminats equal 0:
2𝑥(2𝑦 − 𝑥) − 2𝑦(2𝑥 − 𝑦) = 0,

2𝑥2𝑧 − 2𝑧(2𝑥 − 𝑦) = 0,

2𝑦2𝑧 − 2𝑧(2𝑦 − 𝑥) = 0,

⇐⇒


𝑦2 − 𝑥2 = 0,
𝑦𝑧 = 0,
𝑥𝑧 = 0.

The first leads to 𝑦 = ±𝑥, the second 𝑦 = 0 (then 𝑥 = 0) or 𝑧 = 0. That is we have points (0, 0, 𝑧) and (𝑥,±𝑥, 0).
Now

• (0, 0, 𝑧) ∈ 𝐷 iff 𝑧2 = 1, that is (0, 0,±1).
• (𝑥,±𝑥, 0) ∈ 𝐷 iff 2𝑥2 = 1 ± 𝑥2. If +, 2𝑥2 = 1 + 𝑥2, we get 𝑥 = ±1, that is points (1, 1, 0) and (−1,−1, 0). It
−, 𝑥2 = 1

3 , thus points
(

1√
3
,− 1√

3
, 0

)
and

(
− 1√

3
, 1√

3
, 0

)
.

Prom these we see that (1, 1, 0) and (−1,−1, 0) are points at max distance to ®0 while
(

1√
3
,− 1√

3
, 0

)
and

(
− 1√

3
, 1√

3
, 0

)
are points of 𝐷 at min distance to ®0. □

Exercise 3. i) 𝐷 is a triangle with vertex (−1, 0), (1, 0) and (0, 1). In particular, it is closed (because defined by
large inequalities) and bounded (we can also say: 0 ⩽ 𝑦 ⩽ 1 − |𝑥 | ⩽ 1, and 1 − |𝑥 | ⩾ 0 implies |𝑥 | ⩽ 1). Therefore,
it is compact.

ii) 𝑓 ∈ 𝒞(𝐷): according to Weierstrass’ theorem, 𝑓 admits both global min and max on 𝐷. Let’s determine
these points. If (𝑥, 𝑦) ∈ 𝐷 is a min/max point then:

• either (𝑥, 𝑦) ∈ Int 𝐷, in this case (Fermat’s theorem) ∇ 𝑓 (𝑥, 𝑦) = ®0. Now,

∇ 𝑓 (𝑥, 𝑦) = ®0, ⇐⇒


2𝑦 − 6𝑥2 = 0,

2𝑥 − 3𝑦2 = 0,
⇐⇒


𝑦 = 3𝑥2,

2𝑥 − 27𝑥4 = 0, ⇐⇒ 𝑥(2 − 27𝑥3) = 0,

from which we obtain 𝑥 = 0 or 𝑥 = 3
√︃

2
27 =

3√2
3 . In the first case 𝑦 = 0, in the second 𝑦 =

3√4
3 . In conclusion,

stationary points are (0, 0) and
( 3√2

3 ,
3√4
3

)
. We notice that (0, 0) ∉ Int 𝐷 while

( 3√2
3 ,

3√4,
3

)
∈ Int 𝐷.

• or (𝑥, 𝑦) ∈ 𝐷\Int 𝐷 = 𝐴 ∪ 𝐵 ∪ 𝐶 where
𝐴 = {(𝑥, 0) : −1 ⩽ 𝑥 ⩽ 1}, 𝐵 = {(𝑥, 𝑥 + 1) : −1 ⩽ 𝑥 ⩽ 0}, 𝐶 = {(𝑥, 1 − 𝑥) : 0 ⩽ 𝑥 ⩽ 1}.

On 𝐴: 𝑓 (𝑥, 0) = −2𝑥3 from which we easily deduce that (1, 0) is min point for 𝑓 on 𝐴, (−1, 0) is max
point for 𝑓 on 𝐴.
On 𝐵: 𝑓 (𝑥, 𝑥+1) = 2𝑥(𝑥+1)−2𝑥3−(𝑥+1)3 = 2𝑥2+2𝑥−2𝑥3−(𝑥3+3𝑥2+3𝑥+1) = −3𝑥3−𝑥2−𝑥−1 =: 𝑔(𝑥).
To determine min/max 𝑔(𝑥) for 𝑥 ∈ [−1, 0] we compute 𝑔′ (𝑥) = −9𝑥2 − 2𝑥 − 1 and discuss 𝑔′ (𝑥) ⩾ 0, iff
9𝑥2 + 2𝑥 + 1 ⩽ 0. Since Δ = 4 − 32 < 0 we conclude that the previous inequality is never verified, thus
𝑔′ ⩽ 0 on [−1, 0], that is 𝑔 ↘. We conclude that (−1, 0) is max for 𝑓 on 𝐵 and (0, 1) is min for 𝑓 on 𝐵.
On𝐶: 𝑓 (𝑥, 1−𝑥) = 2𝑥(1−𝑥)−2𝑥3−(1−𝑥)3 = 2𝑥−2𝑥2−2𝑥3−(1−3𝑥+3𝑥2−𝑥3) = −𝑥3−5𝑥2+5𝑥−1 =: 𝑔(𝑥).
To determine min/max 𝑔(𝑥) for 𝑥 ∈ [0, 1] we compute 𝑔′ (𝑥) = −3𝑥2 − 10𝑥 + 5 and discuss 𝑔′ (𝑥) ⩾ 0, iff
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3𝑥2 + 10𝑥 − 5 ⩽ 0. Here Δ = 100 + 60 = 160 > 0, thus solutions of the inequality are −10−
√

160
6 ⩽ 𝑥 ⩽

−10+
√

160
6 = −5+2

√
10

3 . Since 0 ⩽ 𝑥 ⩽ 1, we deduce that 𝑔 ↗ for 0 ⩽ 𝑥 ⩽ −5+2
√

10
3 . Thus (0, 1) and (1, 0)

are min points,
(
−5+2

√
10

3 , 8−2
√

10
3

)
is a max point.

Conclusion. Candidates for min are
( 3√2

3 ,
3√4,
3

)
(from Int 𝐷), (1, 0) (from 𝐴), (0, 1) (from 𝐵) and again (0, 1), (1, 0)

(from 𝐶). We have

𝑓 (1, 0) = −2, 𝑓 (0, 1) = −1, 𝑓

(
3√2
3
,

3√4,
3

)
= 2

3√8
27

− 2
2

27
− 4

27
= − 4

27
.

We conclude that (0, 1) is minimum point for 𝑓 on 𝐷.
Candidates for max points are

( 3√2
3 ,

3√4,
3

)
(from Int 𝐷), (−1, 0) (from 𝐴), the same from 𝐵, and

(
−5+2

√
10

3 , 8−2
√

10
3

)
(from 𝐶). We have

𝑓

(
3√2
3
,

3√4,
3

)
= − 4

27
, 𝑓 (−1, 0) = +2, 𝑓

(
−5 + 2

√
10

3
,

8 − 2
√

10
3

)
=

2
27

(
−251 + 80

√
10

)
= 0.146 . . .

We conclude that (−1, 0) is max point for 𝑓 on 𝐷. □

Exercise 4. i) (𝑥, 𝑦, 0) ∈ 𝐷 iff 𝑥2 + 𝑦2 = 1 and 𝑦2 + 1, that is 𝑦 = ±1 hence 𝑥2 = 0, that is 𝑥 = 0. Thus
(0,±1, 0) ∈ 𝐷 and 𝐷 ≠ ∅. We may see 𝐷 = {𝑔1 = 0, 𝑔2 = 0}, where 𝑔1 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 − 𝑧2 − 1 and
𝑔2 (𝑥, 𝑦, 𝑧) = 𝑦2 + 𝑧 − 1. Then, (𝑔1, 𝑔2) is a submersion on 𝐷 iff

2 = rk

∇𝑔1

∇𝑔2

 = rk


2𝑥 2𝑦 −2𝑧

0 2𝑦 1

 .
Now, rank is < 2 iff all 2 × 2 sub matrices of previous matrix have null determinant, this leading to the system

4𝑥𝑦 = 0,
2𝑥 = 0,
2𝑦 + 4𝑦𝑧 = 0,

⇐⇒


𝑥 = 0,

𝑦(1 + 2𝑧) = 0,
⇐⇒ (0, 0, 𝑧), ∨ (0, 𝑦,−1

2
).

Now, (0, 0, 𝑧) ∈ 𝐷 iff −𝑧2 = 1 and 𝑧 = 1 (impossible!); (0, 𝑦,− 1
2 ) ∈ 𝐷 iff 𝑦2 = 5

4 and 𝑦2 = 3
2 (impossible!). We

conclude that (𝑔1, 𝑔2) is a submersion on 𝐷.
ii) Clearly 𝐷 is closed. Is it also bounded? Plugging 𝑦2 = 1 − 𝑧 into the first equation, we have

𝑥2 = 𝑧2 − 𝑧 + 1,

thus points (
±
√︁
𝑧2 − 𝑧 + 1,±

√
1 − 𝑧, 𝑧

)
∈ 𝐷.

When 𝑧 −→ −∞ we see
(
±
√
𝑧2 − 𝑧 + 1,±

√
1 − 𝑧, 𝑧

)
−→ ∞3. This tells that 𝐷 is unbounded, hence not compact.

iii) We have to minimize/maximize 𝑓 =
√︁
𝑥2 + 𝑦2 + 𝑧2 or, equivalently, 𝑓 = 𝑥2 + 𝑦2 + 𝑧2. By ii), 𝐷 is unbounded,

thus there is no max for 𝑓 . However, since clearly lim(𝑥,𝑦,𝑧)→∞3 𝑓 = +∞, 𝑓 has global minimum on 𝐷. Let
(𝑥, 𝑦, 𝑧) ∈ 𝐷 be a min point. By i), we can apply the Lagrange theorem: at (𝑥, 𝑦, 𝑧) we must have

∇ 𝑓 = _1∇𝑔1 + _2∇𝑔2, ⇐⇒ rk


∇ 𝑓

∇𝑔1
∇𝑔2

 = rk


2𝑥 2𝑦 2𝑧
2𝑥 2𝑦 −2𝑧
0 2𝑦 1

 = 2,
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iff the determinant of the last matrix equals 0,

−2𝑦(−8𝑥𝑧) + 1(4𝑥𝑦 − 4𝑥𝑦) = 0, ⇐⇒ 𝑥𝑦𝑧 = 0, ⇐⇒ 𝑥 = 0, ∨ 𝑦 = 0, ∨ 𝑧 = 0.

We get points (0, 𝑦, 𝑧), (𝑥, 0, 𝑧), (𝑥, 𝑦, 0). Now:

(0, 𝑦, 𝑧) ∈ 𝐷, ⇐⇒


𝑦2 − 𝑧2 = 1,

𝑦2 + 𝑧 = 1
⇐⇒


𝑧2 + 𝑧 = 0,

𝑦2 = 1 − 𝑧

⇐⇒ (0, 0,±1), (0,−1,±
√

2).

Similarly,

(𝑥, 0, 𝑧) ∈ 𝐷, ⇐⇒


𝑥2 − 𝑧2 = 1,

𝑧 = 1
⇐⇒


𝑥2 = 2,

𝑧 = 1,
⇐⇒ (±

√
2, 0, 1).

Finally,

(𝑥, 𝑦, 0) ∈ 𝐷, ⇐⇒


𝑥2 + 𝑦2 = 1,

𝑦2 = 1
⇐⇒


𝑥2 = 0,

𝑦2 = 1
⇐⇒ (0,±1, 0).

By computing distances we deduce that points of 𝐷 at min distance to ®0 are (0, 0,±1), (0,±1, 0). □

Exercise 5. i) We use polar coordinates. We have

𝑓 (𝑥, 𝑦) = 𝜌4
(
cos4 \ + sin4 \

)
− 2𝜌2 (cos \ − sin \)2 .

Now, 𝑔(\) := cos4 \ + sin4 \ ⩾ 0 for every \ ∈ [0, 2𝜋]. It is a continuous functions therefore it has a minimum.
Let say that 𝐶 = 𝑔(\𝑚𝑖𝑛) is the minimum value. We claim 𝐶 > 0. Clearly 𝐶 ⩾ 0. If 𝐶 = 𝑔(\𝑚𝑖𝑛) =

cos4 \𝑚𝑖𝑛 + sin4 \𝑚𝑖𝑛 = 0 then cos \𝑚𝑖𝑛 = sin \𝑚𝑖𝑛 = 0, but this is impossible. Thus 𝐶 > 0. Then

𝑓 (𝑥, 𝑦) ⩾ 𝐶𝜌4 − 2𝜌2 (cos \ − sin \)2 ⩾ 𝐶𝜌4 − 8𝜌2 −→ +∞, 𝜌 −→ +∞.

Since 𝜌 = ∥(𝑥, 𝑦)∥ this means lim(𝑥,𝑦)→∞2 𝑓 = +∞.
ii) We have

𝜕𝑥 𝑓 = 4𝑥3 − 4(𝑥 − 𝑦), 𝜕𝑦 𝑓 = 4𝑦3 + 4(𝑥 − 𝑦).
Clearly 𝜕𝑥 𝑓 , 𝜕𝑦 𝑓 ∈ 𝒞(R2), thus 𝑓 is differentiable on R2. Stationary points fulfils,

∇ 𝑓 (𝑥, 𝑦) = ®0, ⇐⇒


4𝑥3 − 4(𝑥 − 𝑦) = 0,

4𝑦3 + 4(𝑥 − 𝑦) = 0.
⇐⇒


𝑥 − 𝑦 = 𝑥3,

𝑦3 + 𝑥3 = 0,
⇐⇒


𝑦 = −𝑥,

𝑥3 − 2𝑥 = 0,

From the second we get 𝑥(𝑥2 − 2) = 0, thus either 𝑥 = 0 (then 𝑦 = 0), or 𝑥 = ±
√

2 (and 𝑦 = ∓
√

2). Thus, we get
points (0, 0), (

√
2,−

√
2) and (−

√
2,
√

2).
iii) By i) we know that 𝑓 has a global minimum on R2. Since Int R2 = R2, the global minimum must be

a stationary point (Fermat’s theorem). The possibilities are the stationary points (0, 0), (
√

2,−
√

2), (−
√

2,
√

2).
Clearly 𝑓 (0, 0) = 0 while

𝑓 (±
√

2,∓
√

2) = 4 + 4 − 2(2
√

2)2 = 8 − 16 = −8.

We deduce that (±
√

2,∓
√

2) are global minimum points for 𝑓 .
By i) there is no max for 𝑓 on R2. Finally, 𝑓 (R2) = [−8, +∞[. □
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Exercise 6. i) For 𝑧 = 2 we get

(𝑥, 𝑦, 2) ∈ 𝐷, ⇐⇒


𝑥2 + 𝑦2 = 4,

𝑦2 = 1,
⇐⇒


𝑦 = ±1,

𝑥2 = 3,

from which (±
√

3,±1, 2) ∈ 𝐷 (four points). Clearly 𝐷 = {𝑔1 = 0, 𝑔2 = 0} where 𝑔1 = 𝑥2 + 𝑦2 − 𝑧2 and
𝑔2 = 𝑦2 + (𝑧 − 2)2 − 1. Clearly 𝑔1, 𝑔2 are differentiable (being polynomials). (𝑔1, 𝑔2) is not a submersion where

rk

∇𝑔1

∇𝑔2

 < 2, ⇐⇒ rk


2𝑥 2𝑦 −2𝑧

0 2𝑦 2(𝑧 − 2)

 < 2, ⇐⇒


4𝑥𝑦 = 0,
4𝑥(𝑧 − 2) = 0,
4𝑦(𝑧 − 2) + 4𝑦𝑧 = 0.

From first equation we get the alternative 𝑥 = 0 or 𝑦 = 0. In the first case, the second equation becomes 0 = 0
(trivial) while the third one is 𝑦(𝑧 − 1) = 0, that is 𝑦 = 0 or 𝑧 − 1. Thus we have points of type (0, 0, 𝑧) and (0, 𝑦, 1).
Now,

(0, 0, 𝑧) ∈ 𝐷, ⇐⇒


𝑧2 = 0,

(𝑧 − 2)2 = 1,
(impossible), (0, 𝑦, 1) ∈ 𝐷, ⇐⇒


𝑦2 = 1,

𝑦2 = 0,
(impossible).

In the second alternative 𝑦 = 0. In this case, the third equation of initial system becomes trivial 0 = 0 while the
second leads to 𝑥(𝑧 − 2) = 0, that is either 𝑥 = 0 or 𝑧 = 2. This gives points (0, 0, 𝑧) and (𝑥, 0, 2). The first ones
have already been checked and we know they are not on 𝐷. For the second ones,

(𝑥, 0, 2) ∈ 𝐷, ⇐⇒


𝑥2 = 4,

0 = 1,
(impossible).

Conclusion: there are not points of 𝐷 at which rank of [∇𝑔1 ∇𝑔2] is less than 2, that is, (𝑔1, 𝑔2) is a submersion
on 𝐷.

ii) 𝐷 is clearly closed being defined by equations involving continuous functions. Let’s check that it is also
bounded. From the second equation,

𝑦2 ⩽ 1, (𝑧 − 2)2 ⩽ 1, =⇒ 1 ⩽ 𝑧 ⩽ 3, =⇒ 𝑧2 ⩽ 9.

Then, from first equation,
𝑥2 = 𝑧2 − 𝑦2 ⩽ 𝑧2 ⩽ 9,

thus

∥(𝑥, 𝑦, 𝑧)∥ =
√︃
𝑥2 + 𝑦2 + 𝑧2 ⩽

√
9 + 1 + 9, ∀(𝑥, 𝑦, 𝑧) ∈ 𝐷.

This means that 𝐷 is bounded, hence compact.
iii) We have to minimize/maximize 𝑓 (𝑥, 𝑦, 𝑧) = ∥(𝑥, 𝑦, 𝑧)∥ or, equivalently, 𝑓 (𝑥, 𝑦, 𝑧) = ∥(𝑥, 𝑦, 𝑧)∥2 = 𝑥2+𝑦2+𝑧2.

Clearly, such an 𝑓 is continuous and, by ii), 𝐷 is compact. Thus 𝑓 admits both min and max on 𝐷.
To determite min/max points, we apply Lagrange’s theorem. By i), we can apply this theorem. Thus, if

(𝑥, 𝑦, 𝑧) ∈ 𝐷 is a min/max point for 𝑓 , we must have

∇ 𝑓 = _1∇𝑔1 + _2∇𝑔2, ⇐⇒ rk


∇ 𝑓

∇𝑔1
∇𝑔2

 < 3.
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Since this last matrix is a 3 × 3 matrix, this condition boils down to

0 = det


∇ 𝑓

∇𝑔1
∇𝑔2

 = det


2𝑥 2𝑦 2𝑧
2𝑥 2𝑦 −2𝑧
0 2𝑦 2(𝑧 − 2)

 = 2𝑥 (4𝑦(𝑧 − 2) + 4𝑦𝑧) − 2𝑥 (4𝑦(𝑧 − 2) − 4𝑦𝑧)

that is
𝑥𝑦𝑧 = 0.

This leads to the following alternatives: 𝑥 = 0, that is points (0, 𝑦, 𝑧), 𝑦 = 0, that is points (𝑥, 0, 𝑧) and 𝑧 = 0, that
is points (𝑥, 𝑦, 0). Now,

(0, 𝑦, 𝑧) ∈ 𝐷, ⇐⇒


𝑦2 = 𝑧2,

𝑦2 + (𝑧 − 2)2 = 1,
⇐⇒


𝑦2 = 𝑧2,

2𝑧2 − 2𝑧 + 3 = 0,
from which we see that there are not solutions. Again,

(𝑥, 0, 𝑧) ∈ 𝐷, ⇐⇒


𝑥2 = 𝑧2,

(𝑧 − 2)2 = 1,
⇐⇒


𝑧 = 1, 3

𝑥2 = 𝑧2,

from which we obtain points (±1, 0, 1), (±3, 0, 3). Finally,

(𝑥, 𝑦, 0) ∈ 𝐷, ⇐⇒


𝑥2 + 𝑦2 = 0,

𝑦2 = −3,
for which there are not solutions.

Conclusion: since 𝑓 (±1, 0, 1) = 2 and 𝑓 (±3, 0, 3) = 18 we deduce that (±1, 0, 1) are min points while (±3, 0, 3)
are max points. □

Exercise 7. i) In spherical coordinates,

𝑓 (𝑥, 𝑦, 𝑧) = 𝜌4 − 𝜌2 (cos \)2 (sin 𝜑)2 + 𝜌2 (sin \)2 (sin 𝜑)2 ⩾ 𝜌4 − 2𝜌2 −→ +∞,

when 𝜌 = ∥(𝑥, 𝑦, 𝑧)∥ −→ +∞, and this means that 𝑙𝑖𝑚 (𝑥,𝑦,𝑧)→∞3 𝑓 (𝑥, 𝑦, 𝑧) = +∞.
ii) Point (𝑥, 𝑦, 𝑧) is stationary point for 𝑓 iff ∇ 𝑓 (𝑥, 𝑦, 𝑧) = ®0, that is

2(𝑥2 + 𝑦2 + 𝑧2)2𝑥 − 2𝑥 = 0,
2(𝑥2 + 𝑦2 + 𝑧2)2𝑦 + 2𝑦 = 0,
2(𝑥2 + 𝑦2 + 𝑧2)2𝑧 = 0.

The third equation leads to the alternative 𝑥2 + 𝑦2 + 𝑧2 = 0 (that is (𝑥, 𝑦, 𝑧) = (0, 0, 0)) or 𝑧 = 0. Plugging this into
the other two equations we obtain

𝑧 = 0,
𝑥
(
2(𝑥2 + 𝑦2) − 1

)
= 0,

𝑦
(
2(𝑥2 + 𝑦2) + 1

)
= 0,

⇐⇒


𝑧 = 0,
𝑦 = 0,
𝑥(2𝑥2 − 1) = 0,

⇐⇒ (𝑥, 𝑦, 𝑧) = (0, 0, 0),
(
± 1
√

2
, 0, 0

)
.

iii) Since 𝑓 ∈ 𝒞(R3) and by i), we conclude that there is no global max for 𝑓 on R3 while there is minimum.
Since 𝑓 is also differentiable (clearly 𝜕𝑥 𝑓 , 𝜕𝑦 𝑓 , 𝜕𝑧 𝑓 ∈ 𝒞(R3)) and Int R3 = R3, according to Fermat’s theorem,
any min point for 𝑓 is a stationary point for 𝑓 . By ii) we deduce that possible min points are (0, 0, 0) (where 𝑓 = 0)
and

(
± 1√

2
, 0, 0

)
(where 𝑓 = 1

4 − 1
2 = − 1

4 ). We conclude that global min points for 𝑓 on R3 are
(
± 1√

2
, 0, 0

)
.

Finally, R3 is connected, hence 𝑓 (R3) is an interval. By previous discussion 𝑓 (R3) = [− 1
4 , +∞[. □
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Exercise 8. i) For instance (𝑥, 𝑦, 0) ∈ 𝐷 iff 𝑥2 + 𝑦2 = 1 and 𝑥 + 𝑦 = 0 that is 𝑦 = −𝑥 and 2𝑥2 = 1, thus(
± 1√

2
,∓ 1√

2
, 0

)
∈ 𝐷 and 𝐷 ≠ ∅. Now, 𝐷 = {𝑔1 = 0, 𝑔2 = 0} where 𝑔1 = 𝑥2 + 𝑦2 − 𝑧2 − 1 and 𝑔2 = 𝑥 + 𝑦 + 2𝑧. We

have that (𝑔1, 𝑔2) is a submersion on 𝐷 iff

rk

∇𝑔1

∇𝑔2

 = rk


2𝑥 2𝑦 −2𝑧

1 1 2

 = 2, ∀(𝑥, 𝑦, 𝑧) ∈ 𝐷.

Now, rank is < 2 iff all 2 × 2 sub determinants of previous matrix are null, that is
2𝑥 − 2𝑦 = 0,
4𝑥 + 2𝑧 = 0,
4𝑦 + 2𝑧 = 0.

⇐⇒


𝑦 = 𝑥,

𝑧 = −2𝑥,
⇐⇒ (𝑥, 𝑦, 𝑧) = (𝑥, 𝑥,−2𝑥).

We have

(𝑥, 𝑥,−2𝑥) ∈ 𝐷, 𝑖 𝑓 𝑓


𝑥2 + 𝑥2 − 4𝑥2 = 1,

2𝑥 − 4𝑥 = 0,
⇐⇒


𝑥 = 0,

0 = 1,
which is manifestly impossible. We conclude that rank of [∇𝑔1 ∇𝑔2]⊥ is never < 2 on 𝐷, thus (𝑔1, 𝑔2) is a
submersion on 𝐷.

ii) 𝐷 is the set of zeroes of 𝑔1, 𝑔2 ∈ 𝒞(R3), thus it is closed. Is it bounded? We may notice that

(𝑥, 𝑦, 𝑧) ∈ 𝐷, ⇐⇒


𝑧 = − 𝑥+𝑦
2 ,

𝑥2 + 𝑦2 = 1 + 𝑧2 = 1 +
(
− 𝑥+𝑦

2
)2

= 1 + 1
4 (𝑥

2 + 𝑦2 + 2𝑥𝑦).
From the secon equation,

3
4
(𝑥2 + 𝑦2) = 1 + 1

2
𝑥𝑦, ⇐⇒ 𝑥2 + 𝑦2 =

4
3
+ 2

3
𝑥𝑦.

We claim that from this a bound for 𝜌2 := 𝑥2 + 𝑦2 follows. Indeed,

𝜌2 =
4
3
+ 2

3
𝜌2 sin \ cos \ =

4
3
+ 1

3
𝜌2 sin(2\) ⩽ 4

3
+ 1

3
𝜌2, =⇒ 2

3
𝜌2 ⩽

4
3
, =⇒ 𝜌2 ⩽ 2.

Therefore
𝑥2 + 𝑦2 ⩽ 2, =⇒ 𝑥2 ⩽ 2, 𝑦2 ⩽ 2, =⇒ |𝑥 |, |𝑦 | ⩽

√
2.

From this
|𝑧 | =

���−𝑥 + 𝑦

2

��� = 1
2
( |𝑥 | + |𝑦 |) ⩽ 1

2
· 2
√

2 =
√

2.

Finally,

∥(𝑥, 𝑦, 𝑧)∥ =
√︃
𝑥2 + 𝑦2 + 𝑧2 ⩽

√
2 + 2 + 2 =

√
6, ∀(𝑥, 𝑦, 𝑧) ∈ 𝐷.

This confirms that 𝐷 is bounded, hence compact.
iii) We have to determine min/max of 𝑓 (𝑥, 𝑦, 𝑧) =

√︁
𝑥2 + 𝑦2 or, equivalently, 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2. Since 𝐷 is

compact and 𝑓 is continuous, 𝑓 has both global min and max on 𝐷. Top determine these points we apply the
Lagrange multipliers theorem. Since (𝑔1, 𝑔2) is a submersion on 𝐷, at min/max points (𝑥, 𝑦, 𝑧) ∈ 𝐷 for 𝑓 we have

∇ 𝑓 = _1∇𝑔1 + _2∇𝑔2, ⇐⇒ rk


∇ 𝑓

∇𝑔1
∇𝑔2

 = rk


2𝑥 2𝑦 0
2𝑥 2𝑦 −2𝑧
1 1 2

 = 2,
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that is, iff

det


2𝑥 2𝑦 0
2𝑥 2𝑦 −2𝑧
1 1 2

 = 0, ⇐⇒ 2𝑥(4𝑦 + 2𝑧) − 2𝑦(4𝑥 + 2𝑧) = 0, ⇐⇒ 𝑧(𝑥 − 𝑦) = 0.

This produces points 𝑧 = 0, that is (𝑥, 𝑦, 0) and points 𝑦 = 𝑥, that is (𝑥, 𝑥, 𝑧). Now:

(𝑥, 𝑦, 0) ∈ 𝐷, ⇐⇒


𝑥2 + 𝑦2 = 1,

𝑥 + 𝑦 = 0,
⇐⇒


𝑦 = −𝑥,

2𝑥2 = 1,
⇐⇒

(
± 1
√

2
,∓ 1

√
2
, 0

)
,

and

(𝑥, 𝑥, 𝑧) ∈ 𝐷, ⇐⇒


2𝑥2 − 𝑧2 = 1,

2𝑥 + 2𝑧 = 0,
⇐⇒


𝑧 = −𝑥,

𝑥2 = 1,
⇐⇒ (±1,±1,∓1).

Now, since

𝑓

(
± 1
√

2
,∓ 1

√
2
, 0

)
=

1
2
+ 1

2
= 1, 𝑓 (±1,±1,∓1) = 1 + 1 = 2,

we deduce that
(
± 1√

2
,∓ 1√

2
, 0

)
are min points while (±1,±1,∓1) are max points. □

Exercise 9. i) Figure below. 𝐷 is closed (defined by large inequalities involving continuous functions. Since
𝐷R2 and 𝐷 ≠ ∅ (both evident), 𝐷 cannot be open. 𝐷 is bounded: indeed, if (𝑥, 𝑦) ∈ 𝐷 then 0 ⩽ 𝑥 ⩽ 2 and
0 ⩽ 𝑦 ⩽ 2𝑥 ⩽ 4, thus ∥(𝑥, 𝑦)∥ =

√︁
𝑥2 + 𝑦2 ⩽

√
4 + 16 =

√
20. Therefore, 𝐷 is also compact (that is, closed and

bounded). 𝐷 is made of one single piece (clearly, any two points are joined by a line entirely contained in 𝐷).
ii) Clearly 𝑓 ∈ 𝒞(𝐷), 𝐷 is compact, thus 𝑓 admits both min and max on 𝐷. To determine these points, let

(𝑥, 𝑦) ∈ 𝐷 be a min/max point. We have the following alternative:
• either (𝑥, 𝑦) ∈ Int 𝐷: then, since 𝜕𝑥 𝑓 = 3𝑥2 − 3𝑦 ∈ 𝒞(R2), 𝜕𝑦 𝑓 = 3𝑦2 − 3𝑥 ∈ 𝒞(R2), 𝑓 is differentiable,

thus, by Fermat’s theorem, ∇ 𝑓 (𝑥, 𝑦) = ®0. Now,

∇ 𝑓 (𝑥, 𝑦) = ®0, ⇐⇒


3𝑥2 − 3𝑦 = 0,

3𝑦2 − 3𝑥 = 0,
⇐⇒


𝑦 = 𝑥2,

𝑥4 − 𝑥 = 0.

The second equation leads to 𝑥 = 0 or 𝑥3 = 1, that is 𝑥 = 1. Thus we get points (0, 0) and (1, 1). Since
(0, 0) ∉ Int 𝐷 we discard this point, while (1, 1) ∈ Int 𝐷.

• or (𝑥, 𝑦) ∈ 𝐷\Int 𝐷 = 𝐴 ∪ 𝐵 ∪ 𝐶 where

𝐴 = {(𝑥, 0) : 0 ⩽ 𝑥 ⩽ 2}, 𝐵 = {(𝑥, 2𝑥) : 0 ⩽ 𝑥 ⩽ 2}, 𝐶 = {(2, 𝑦) : 0 ⩽ 𝑦 ⩽ 4}.
On 𝐴,

𝑓 (𝑥, 0) = 𝑥3,

which is minimum for 𝑥 = 0 and maximum for 𝑥 = 2. Thus, candidate min is (0, 0) while candidate max
is (2, 0).

On 𝐵,
𝑓 (𝑥, 2𝑥) = 𝑥3 + 8𝑥3 − 6𝑥2 = 9𝑥3 − 6𝑥2 =: 𝑔(𝑥).

We have 𝑔′ (𝑥) = 27𝑥2 − 12𝑥 = 3𝑥(9𝑥 − 4) ⩾ 0 iff (for 0 ⩽ 𝑥 ⩽ 2), 𝑥 ⩾ 4
9 . Thus 𝑥 = 0, 2 are max points,

𝑥 = 4
9 is min point. For 𝑓 this means that points (0, 0) and (2, 4) are possible max points while ( 4

9 ,
8
9 ) is a

possible min point.
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On 𝐶 we have 𝑓 (2, 𝑦) = 8 + 𝑦3 − 6𝑦 =: 𝑔(𝑦). We have 𝑔′ (𝑦) = 3𝑦2 − 6 = 3(𝑦2 − 2) ⩾ 0 iff 𝑦2 ⩾ 2 that
is, for 0 ⩽ 𝑦 ⩽ 4, when

√
2 ⩽ 𝑦 ⩽ 4. Thus, 𝑦 = 0, 4 are max points, while 𝑦 =

√
2 is min point for 𝑓 on 𝐶.

We conclude that (2,
√

2) is possible min point for 𝑓 while (2, 0) and (2, 4) are possible max points for 𝑓 .
We can now draw the conclusion. Possible max points are (1, 1) (from Ind 𝐷), (2, 0) (from 𝐴), (0, 0), and (2, 4)
(from 𝐵), (2, 0) and (2, 4) (from 𝐶). Since

𝑓 (1, 1) = −1, 𝑓 (2, 0) = 8, 𝑓 (0, 0) = 0, 𝑓 (2, 4) = 48,
we conclude that (2, 4) is global max for 𝑓 on 𝐷.

Possible min points are (1, 1) (from Ind 𝐷), (0, 0) (from 𝐴), ( 4
9 ,

8
9 ) (from 𝐵), (2,

√
2) (from 𝐶). Since

𝑓 (1, 1) = −1, 𝑓 (0, 0) = 0, 𝑓

(
4
9
,

8
9

)
=

43 + 83 − 33 · 4 · 8
93 = −288

729
, 𝑓 (2,

√
2) = 8 + 2

√
2 − 3 · 2

√
2 > 0,

from which we deduce that (1, 1) is the global min point. □

Exercise 10. i) For example (0, 𝑦, 𝑧) ∈ 𝐷 iff
−𝑦2 + 3𝑧2 = 2,

𝑦2 − 𝑧2 = 0,
⇐⇒


𝑧2 = 𝑦2,

𝑧2 = 1,
⇐⇒


𝑧 = ±1,

𝑦 = ±1,
that is (0,±1,±1) ∈ 𝐷 (four points, all possible combinations of sign ±). Clearly 𝐷 = {𝑔1 = 0, 𝑔2 = 0} where
𝑔1 = 𝑥2 − 𝑦2 + 3𝑧2 − 2 and 𝑔2 = 𝑥2 + 𝑦2 − 𝑧2 − 4𝑥. Now, (𝑔1, 𝑔2) is a submersion iff

rk

∇𝑔1

∇𝑔2

 = rk


2𝑥 −2𝑦 6𝑧

2(𝑥 − 2) 2𝑦 −2𝑧

 = 2, ∀(𝑥, 𝑦, 𝑧) ∈ 𝐷.

This is false iff all 2 × 2 subdeterminants vanish, that is, iff
4𝑥𝑦 + 4𝑦(𝑥 − 2) = 0,
−4𝑥𝑧 − 12𝑧(𝑥 − 2) = 0,
4𝑦𝑧 − 12𝑦𝑧 = 0,

⇐⇒


𝑦(𝑥 − 1) = 0,
𝑧(2𝑥 − 1) = 0,
𝑦𝑧 = 0.

The last equation leads to the alternative 𝑦 = 0 or 𝑧 = 0. In the first case the system reduces to
𝑦 = 0,

𝑧(2𝑥 − 1) = 0,
⇐⇒


𝑦 = 0,

𝑧 = 0,
∨


𝑦 = 0,

𝑥 = 1
2 .

Therefore, we have points (𝑥, 0, 0) and ( 1
2 , 0, 𝑧). Now

(𝑥, 0, 0) ∈ 𝐷, ⇐⇒


𝑥2 = 2,

𝑥2 − 4𝑥 = 0,
(impossible),

and (
1
2
, 0, 𝑧

)
∈ 𝐷, ⇐⇒


1
4 + 3𝑧2 = 2,

1
4 − 𝑧2 − 2 = 0,

(impossible).

In the second alternative, 𝑧 = 0, the system reduces to
𝑧 = 0,

𝑦(𝑥 − 1) = 0,
⇐⇒


𝑧 = 0,

𝑦 = 0
∨


𝑧 = 0,

𝑥 = 1.
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Solutions are points (𝑥, 0, 0) and (1, 𝑦, 0). Now,

(𝑥, 0, 0) ∈ 𝐷, ⇐⇒


𝑥2 = 2,

𝑥2 − 4𝑥 = 0,
(impossible),

and

(1, 𝑦, 0) ∈ 𝐷, ⇐⇒


1 − 𝑦2 = 2,

1 + 𝑦2 − 4 = 0,
(impossible).

Conclusion: since there are no points on 𝐷 such that rk[∇𝑔1 ∇𝑔2]⊥ < 2, we conclude that (𝑔1, 𝑔2) is a submersion
on 𝐷.

ii) Clearly 𝐷 is closed being defined by equations involving continuous functions. To see whether 𝐷 is compact
or less, we need to check if 𝐷 is bounded. Notice that,

(𝑥, 𝑦, 𝑧) ∈ 𝐷, ⇐⇒


𝑥2 − 𝑦2 + 3𝑧2 = 2,

𝑥2 + 𝑦2 − 𝑧2 − 4𝑥 = 0,
=⇒ 2𝑥2 + 2𝑧2 − 4𝑥 = 2, (𝑥 − 1)2 + 𝑧2 = 3

from which |𝑥 − 1| ⩽
√

3, and 𝑧2 ⩽ 3. The first says 1 −
√

3 ⩽ 𝑥 ⩽ 1 +
√

3, thus 𝑥2 ⩽ 9. Plugging this into one of
the two equations for 𝐷 we have

𝑦2 = 𝑥2 + 3𝑧2 − 2 ⩽ 9 + 9 − 2 = 16,
thus ∥(𝑥, 𝑦, 𝑧)∥ ⩽

√
9 + 3 + 16 =

√
28 for every (𝑥, 𝑦, 𝑧) ∈ 𝐷. This means that 𝐷 is bounded, hence it is compact.

iii) We have to determine min/max of 𝑓 (𝑥, 𝑦, 𝑧) = 𝑦. Clearly, 𝑓 ∈ 𝒞(𝐷) and 𝐷 is compact, thus 𝑓 has both
min and max on 𝐷. By i), to determine these points we can apply the Lagrange theorem. If (𝑥, 𝑦, 𝑧) ∈ 𝐷 is any
min/max point for 𝑓 then

∇ 𝑓 = _1∇𝑔1 + _2∇𝑔2, ⇐⇒ rk


∇ 𝑓

∇𝑔1
∇𝑔2

 = rk


0 1 0
2𝑥 −2𝑦 6𝑧

2(𝑥 − 2) 2𝑦 −2𝑧

 < 3,

and this is equialent to

0 = det


0 1 0
2𝑥 −2𝑦 6𝑧

2(𝑥 − 2) 2𝑦 −2𝑧

 = −1(−4𝑥𝑧 − 12(𝑥 − 2)𝑧) = 8𝑧(2𝑥 − 3), ⇐⇒ 𝑧 = 0, ∨ 𝑥 =
3
2
.

This leads to points (𝑥, 𝑦, 0) and
(

3
2 , 𝑦, 𝑧

)
. Let’s check when they belong to 𝐷. We have

(𝑥, 𝑦, 0) ∈ 𝐷, ⇐⇒


𝑥2 − 𝑦2 = 2,

𝑥2 + 𝑦2 − 4𝑥 = 0,
⇐⇒


𝑦2 = 𝑥2 − 2,

𝑥2 − 2𝑥 − 1 = 0,

We get 𝑥 = 2±2
√

2
2 = 1±

√
2. For 𝑥 = 1+

√
2, we have 𝑦2 = 𝑥2 − 2 = 1+ 2+ 2

√
2− 2 = 1+ 2

√
2, thus 𝑦 = ±

√︁
1 + 2

√
2,

or points
(
1 + 2

√
2,±

√︁
1 + 2

√
2, 0

)
. For 𝑥 = 1 −

√
2 we have 𝑦2 = 𝑥2 − 2 = 1 + 2 − 2

√
2 − 2 = 1 − 2

√
2 < 0, no

solutions. Now, (
3
2
, 𝑦, 𝑧

)
∈ 𝐷, ⇐⇒


9
4 − 𝑦2 + 3𝑧2 = 2,

9
4 + 𝑦2 − 𝑧2 − 6 = 0.
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Summing the two equations we get
9
2
+ 2𝑧2 = 2, ⇐⇒ 2𝑧2 = 2 − 9

2
< 0,

thus no solutions. We conclude that the possible min/max points are
(
1 + 2

√
2,±

√︁
1 + 2

√
2, 0

)
. Clearly, + gives

max point while − is the min point. □

Exercise 9. i) 𝐷 is defined by large inequalities, therefore it is closed. Clearly 𝐷 ≠ ∅,R2, thus 𝐷 is not open. It
is bounded, because 0 ⩽ 𝑥 ⩽ 2 and 0 ⩽ 𝑦 ⩽ 4. Hence, 𝐷 is compact. Clearly, 𝐷 is also connected.

2
x

4

y

ii) Since 𝑓 is continuous, 𝐷 is compact, 𝑓 has both global min and max on 𝐷. Let (𝑥, 𝑦) ∈ 𝐷 be a min/max
point. Then

• either (𝑥, 𝑦) ∈ Int 𝐷, then, according to Fermat’s theorem, ∇ 𝑓 (𝑥, 𝑦) = ®0. Now,

∇ 𝑓 = ®0, ⇐⇒


3𝑥2 − 3𝑦 = 0,

3𝑦2 − 3𝑥 = 0,
⇐⇒


𝑦 = 𝑥2,

𝑥4 − 𝑥 = 0,

Since 𝑥4 − 𝑥 = 0 iff 𝑥(𝑥3 − 1) = 0, that is 𝑥 = 0 or 𝑥 = 1, we get points (0, 0) and (1, 1). The former does
not belong to Int 𝐷 while the latter belongs to Int 𝐷.

• or (𝑥, 𝑦) ∈ 𝐷\Int 𝐷 = 𝐴 ∪ 𝐵 ∪ 𝐶 where

𝐴 := {(𝑥, 0) : 0 ⩽ 𝑥 ⩽ 2}, 𝐵 := {(2, 𝑦) : 0 ⩽ 𝑦 ⩽ 4}, 𝐶 := {(𝑥, 2𝑥) : 0 ⩽ 𝑥 ⩽ 2}.

On 𝐴: 𝑓 (𝑥, 0) = 𝑥3, that takes its min value for 𝑥 = 0 and max value for 𝑥 = 2, thus (0, 0) is the min point
for 𝑓 on 𝐴 and (2, 0) is the max point for 𝑓 on 𝐴.

On 𝐵: 𝑓 (2, 𝑦) = 8 + 𝑦3 − 6𝑦 =: 𝑔(𝑦), 𝑦 ∈ [0, 4]. We have 𝑔′ (𝑦) = 3𝑦2 − 6 ⩾ 0, iff 𝑦2 ⩾ 2, that is
(𝑦 ∈ [0, 4]), 𝑦 ⩾

√
2. Thus 𝑔 ↘ on [0,

√
2] and 𝑔 ↗ on [

√
2, 4]. We conclude that 𝑦 = 0, 4 are max points

for 𝑔 on [0, 4] while 𝑥 =
√

2 is min point for 𝑔 on [0, 4]. This means that (2, 0), (2, 4) are max points for
𝑓 on 𝐵 and (2,

√
2) is min point for 𝑓 on 𝐵.

On 𝐶: 𝑓 (𝑥, 2𝑥) = 𝑥3 + 8𝑥3 − 6𝑥2 = 9𝑥3 − 6𝑥2 =: 𝑔(𝑥), 𝑥 ∈ [0, 2]. We have 𝑔′ (𝑥) = 27𝑥2 − 12𝑥 =

𝑥(27𝑥 − 12) ⩾ 0 iff 𝑥 ⩽ 0 or 𝑥 ⩾ 12
27 = 4

9 . Therefore, on [0, 2], we have 𝑔 ↘ on [0, 4
9 ] and 𝑔 ↗ on [ 4

9 , 2].
We conclude that 𝑥 = 0, 2 are max points for 𝑔 on [0, 2] and 𝑥 = 4

9 is min point for 𝑔 on [0, 2], that is
(0, 0), (2, 4) are max points for 𝑓 on 𝐶 and ( 4

9 ,
8
9 ) is min point for 𝑓 on 𝐶.
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Conclusion. Possible candidates for min are points (1, 1), (0, 0), (2,
√

2),
(

4
9 ,

8
9

)
. We have

𝑓 (1, 1) = −1, 𝑓 (0, 0) = 0, 𝑓 (2,
√

2) = 8 +
√

8 − 6
√

2, 𝑓

(
4
9
,

8
9

)
=

288
729

.

From this we deduce that (1, 1) is the global min point for 𝑓 on 𝐷.
Possible candidates for max are points (1, 1), (2, 0), (2, 4), (0, 0). We have

𝑓 (1, 1) = −1, 𝑓 (2, 0) = 8, 𝑓 (2, 4) = 48, 𝑓 (0, 0) = 0,
from which we see that (2, 4) is the global max point for 𝑓 on 𝐷.

Finally, 𝑓 (𝐷) = [−1, 48]. □

Exercise 10. i) If 𝑧 = 0, that is taking a point of type (𝑥, 𝑦, 0), we have (𝑥, 𝑦, 0) ∈ 𝐷 iff
𝑥2 − 𝑦2 = 2,

𝑥2 + 𝑦2 − 4𝑥 = 0,

from which 2𝑥2 − 4𝑥 = 2, or 𝑥2 − 2𝑥 = 1, leading to 𝑥 = 1 ±
√

2. Plugging this into the first equation we have
𝑦2 = 𝑥2 − 2 = 1 + 2 ± 2

√
2 − 2 = 1 ± 2

√
2. For − there are no solutions, while for + we have 𝑦2 = 1 + 2

√
2 that is

𝑦 = ±
√︁

1 + 2
√

2. In conclusion, (1 +
√

2,±
√︁

1 + 2
√

2, 0) ∈ 𝐷 and 𝐷 ≠ ∅.
We notice that 𝐷 = {𝑔1 = 0, 𝑔2 = 0} where 𝑔1 = 𝑥2 − 𝑦2 + 3𝑧2 − 2 and 𝑔2 = 𝑥2 + 𝑦2 − 𝑧2 − 4𝑥. We recall that

(𝑔1, 𝑔2) is a submersion at (𝑥, 𝑦, 𝑧) iff

2 = rk

∇𝑔1 (𝑥, 𝑦, 𝑧)

∇𝑔2 (𝑥, 𝑦, 𝑧)

 = rk


2𝑥 −2𝑦 6𝑧

2𝑥 − 4 2𝑦 −2𝑧

 .
Now, this fails iff all 2 × 2 sub determinants vanish, that is, iff

4𝑥𝑦 + 4𝑦(𝑥 − 2) = 0,
−4𝑥𝑧 − 4𝑧(𝑥 − 2) = 0,
4𝑦𝑧 − 12𝑦𝑧 = 0

⇐⇒


𝑦(𝑥 − 1) = 0,
𝑧(𝑥 − 1) = 0,
𝑦𝑧 = 0.

The first equation leads to the alternative 𝑦 = 0 or 𝑥 = 1. In the first case we get the subsystem
𝑦 = 0,
𝑧(𝑥 − 1) = 0,
0 = 0

⇐⇒ (𝑥, 0, 0), (1, 0, 𝑧).

In the second case, we obtain the subsystem
𝑥 = 1,
0 = 0,
𝑦𝑧 = 0,

⇐⇒ (1, 0, 𝑧), (1, 𝑦, 0).

We check how many of these points belong to 𝐷. We have

(𝑥, 0, 0) ∈ 𝐷, ⇐⇒


𝑥2 = 2,

𝑥2 − 4𝑥 = 0,
impossible.

Next,

(1, 0, 𝑧) ∈ 𝐷, ⇐⇒


3𝑧2 = 1,

−𝑧2 = 3
impossible.
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Finally,

(1, 𝑦, 0) ∈ 𝐷, ⇐⇒


1 − 𝑦2 = 2,

1 + 𝑦2 − 4 = 0,
impossible.

We conclude that (𝑔1, 𝑔2) is a submersion on 𝐷.
ii) 𝐷 is definitely closed (being defined by equations involving continuous functions). Is it also bounded? If

(𝑥, 𝑦, 𝑧) ∈ 𝐷, then summing the two equations we get
2𝑥2 + 2𝑧2 − 4𝑥 = 2, ⇐⇒ 𝑥2 − 2𝑥 + 𝑧2 = 1, ⇐⇒ (𝑥 − 1)2 + 𝑧2 = 2,

thus
|𝑥 − 1| ⩽

√
2, |𝑧 | ⩽

√
2.

In particular, 1 −
√

2 ⩽ 𝑥 ⩽ 1 +
√

2, from which we can say −3 ⩽ 𝑥 ⩽ 3. Then
𝑦2 = −𝑥2 + 𝑧2 + 4𝑥 ⩽ 𝑧2 + 4𝑥 ⩽ 2 + 12 = 14,

thus
∥(𝑥, 𝑦, 𝑧)∥ =

√︃
𝑥2 + 𝑦2 + 𝑧2 ⩽

√
9 + 14 + 2, ∀(𝑥, 𝑦, 𝑧) ∈ 𝐷.

This means that 𝐷 is bounded, hence compact.
iii) Let 𝑓 (𝑥, 𝑦, 𝑧) := 𝑦. Clearly, 𝑓 ∈ 𝒞(𝐷), thus, according to Weierstrass’ thm, 𝑓 has both global min and max

on 𝐷. To determine these points, thanks to i), we apply Lagrange’s multipliers theorem. At (𝑥, 𝑦, 𝑧) ∈ 𝐷 min/max
for 𝑓 we must have

∇ 𝑓 = _1∇𝑔1 + _2∇𝑔2, ⇐⇒ rk


∇ 𝑓

∇𝑔1
∇𝑔2

 = 2,

that is, iff

0 = det


∇ 𝑓

∇𝑔1
∇𝑔2

 = det


0 1 0
2𝑥 −2𝑦 6𝑧

2𝑥 − 4 2𝑦 −2𝑧

 = − (−4𝑥𝑧 − 12𝑧(𝑥 − 2)) = 4𝑧(4𝑥 − 6).

This leads to 𝑧 = 0 (thus, points (𝑥, 𝑦, 0) or 𝑥 = 3
2 (thus, points ( 3

2 , 𝑦, 𝑧)). Now, by what seen in i),

(𝑥, 𝑦, 0) ∈ 𝐷, ⇐⇒ (1 +
√

2,±
√︃

1 +
√

2, 0).
Moreover(

3
2
, 𝑦, 𝑧

)
∈ 𝐷, ⇐⇒


9
4 − 𝑦2 + 3𝑧2 = 2,

9
4 + 𝑦2 − 𝑧2 = 6,

⇐⇒


𝑧2 = 7
4 ,

𝑦2 = 11
2 ,

⇐⇒
(

3
2
,±

√︂
11
2
,±

√︂
7
4

)
(four points, all possible combinations of sign). Now, since

𝑓 (1 +
√

2,±
√︃

1 +
√

2, 0) = ±
√︃

1 +
√

2, 𝑓

(
3
2
,±

√︂
11
2
,±

√︂
7
4

)
= ±

√︂
11
2

it is clear that min and max are, respectively, points
(

3
2 ,−

√︃
11
2 ,±

√︃
7
4

)
(min points),

(
3
2 , +

√︃
11
2 ,±

√︃
7
4

)
(max points).

□

Exercise 11. The equation is a separable variables equation,

𝑦′ =
1
𝑡
(𝑦2 − 4) = 𝑎(𝑡) 𝑓 (𝑦),
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where 𝑓 (𝑦) = 𝑦2 −4. Constant solutions are 𝑦 ≡ 𝐶 such that 0 = 1
𝑡
(𝐶2 −4), that is 𝐶2 −4 = 0, or 𝐶 = ±2. Since the

solution of the proposed CP is 𝑦(1) = 0, the solution 𝑦 cannot be constant (otherwise 𝑦 ≡ ±2 but 𝑦(1) = 0 ≠ ±2).
Thus, the solution have to be found by separation of variables:

𝑦′ =
1
𝑡
(𝑦2 − 4), ⇐⇒ 𝑦′

𝑦2 − 4
=

1
𝑡
, ⇐⇒ 𝐺 (𝑦)′ = 1

𝑡
,

where

𝐺 (𝑦) =
∫

1
𝑦2 − 4

𝑑𝑦 =
1
4

∫
1

𝑦 − 2
− 1

𝑦 + 2
𝑑𝑦 =

1
4
(log |𝑦 − 2| − log |𝑦 + 2|) = 1

4
log

���� 𝑦 − 2
𝑦 + 2

���� .
Therefore (

1
4

log
���� 𝑦 − 2
𝑦 + 2

����) ′ = 1
𝑡
, ⇐⇒ 1

4
log

���� 𝑦 − 2
𝑦 + 2

���� = ∫
1
𝑡
𝑑𝑡 + 𝑐 = log |𝑡 | + 𝑐.

Imposing the passage condition 𝑦(1) = 0 we easily get 𝑐 = 0, thus
1
4

log
���� 𝑦 − 2
𝑦 + 2

���� = log |𝑡 |, ⇐⇒
���� 𝑦 − 2
𝑦 + 2

���� = 𝑡4, ⇐⇒ 𝑦 − 2
𝑦 + 2

= ±𝑡4.

Again, by 𝑦(1) = 0 we get −1 = ±1, thus sign is − and
𝑦 − 2
𝑦 + 2

= −𝑡4, ⇐⇒ 𝑦 − 2 = −𝑡4 (𝑦 + 2), ⇐⇒ 𝑦(1 + 𝑡4) = 2(1 − 𝑡4), ⇐⇒ 𝑦 = 2
1 − 𝑡4

1 + 𝑡4
,

which is the sought solution. □

Exercise 12. i) Notice that 𝐷 ∩ {𝑥 = 0} = {(0, 𝑦, 𝑧) :
√︁
|𝑦 | ⩽ 𝑧 ⩽ 2 − 𝑦2}.

y

z

Figure 1. 𝐷 ∩ {𝑥 = 0} (left) and 𝐷 (right)

ii) We have
_3 (𝐷) =

∫
𝐷

1 𝑑𝑥𝑑𝑦𝑑𝑧 =
∫
(𝑥2+𝑦2 )1/4⩽𝑧⩽2−𝑥2−𝑦2 1 𝑑𝑥𝑑𝑦𝑑𝑧

𝑅𝐹
=

∫
(𝑥2+𝑦2 )1/4⩽2−(𝑥2+𝑦2 )

(
2 − (𝑥2 + 𝑦2) − (𝑥2 + 𝑦2)1/4) 𝑑𝑥𝑑𝑦

𝑝𝑜𝑙.𝑐𝑜𝑜𝑟𝑑𝑠
=

∫
√
𝜌⩽2−𝜌2

(
2 − 𝜌2 − √

𝜌
)
𝜌 𝑑𝜌𝑑\

𝑅𝐹
= 2𝜋

∫
√
𝜌⩽2−𝜌2

(
2𝜌 − 𝜌3 − 𝜌3/2) 𝑑𝜌.
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To solve √
𝜌 ⩽ 2 − 𝜌2 for 𝜌 ⩾ 0 notice that √𝜌 is increasing with 𝜌 while 2 − 𝜌2 is decreasing. At 𝜌 = 1 they

concide, thus √𝜌 ⩽ 2 − 𝜌2 iff 0 ⩽ 𝜌 ⩽ 1. Therefore,

_3 (𝐷) = 2𝜋
∫ 1

0

(
2𝜌 − 𝜌3 − 𝜌3/2

)
𝑑𝜌 = 2𝜋

[
𝜌2 − 𝜌4

4
− 𝜌5/2

5/2

]𝜌=1

𝜌=0
= 2𝜋

(
1 − 1

4
− 2

5

)
=

7
10

𝜋. □

iii) To compute the outward flux of ®𝐹 = (2𝑥, 2𝑦, 1) we apply the divergence theorem:∫
𝜕𝐷

®𝐹 · ®𝑛𝑒 𝑑𝜎2 =

∫
𝐷

div ®𝐹 𝑑𝑥𝑑𝑦𝑑𝑧 =

∫
𝐷

(2 + 2 + 0) 𝑑𝑥𝑑𝑦𝑑𝑧 = 4_3 (𝐷) = 14
5
𝜋.

To compute the component of this flux by the part of 𝐷 on the surface 𝑧 = 2 − (𝑥2 + 𝑦2), we need a specific
parametrization. Here we can use the following standard parametrization:

Φ(𝑥, 𝑦) := (𝑥, 𝑦, 2 − 𝑥2 − 𝑦2), (𝑥, 𝑦) ∈ 𝐸 = {(𝑥, 𝑦) : 𝑥2 + 𝑦2 ⩽ 2}.
Notice that

®𝑛Φ =
𝜕𝑥Φ ∧ 𝜕𝑦Φ

∥𝜕𝑥Φ ∧ 𝜕𝑦Φ∥ =
(1, 0,−2𝑥) ∧ (0, 1,−2𝑦)

∥ · · · ∥ =
(2𝑥, 2𝑦, 1)
∥(2𝑥, 2𝑦, 1)∥ .

In particular, from the third component of ®𝑛Φ = 1 we deduce that ®𝑛Φ = ®𝑛𝑒. Therefore, the flux of ®𝐹 through the
surface 𝑧 = 2 − 𝑥2 − 𝑦2 on 𝐷 computed by using the parametrization Φ equals the component of the outward flux
from 𝐷. This flux is∫

𝑥2+𝑦2⩽2 det


®𝐹
𝜕𝑥Φ

𝜕𝑦Φ

 𝑑𝑥𝑑𝑦 =
∫
𝑥2+𝑦2⩽2 det


2𝑥 2𝑦 1
1 0 −2𝑥
0 1 −2𝑦

 𝑑𝑥𝑑𝑦 =
∫
𝑥2+𝑦2⩽2

(
4𝑥2 −

(
−4𝑦2 − 1

) )
𝑑𝑥𝑑𝑦

= 4
∫
𝑥2+𝑦2⩽2 (𝑥

2 + 𝑦2) 𝑑𝑥𝑑𝑦 + 4𝜋

= 4
∫

0⩽𝜌⩽
√

2 𝜌
2𝜌 𝑑𝜌𝑑\ + 4𝜋 𝑅𝐹

= 4 · 2𝜋
∫√

2
0 𝜌3 𝑑𝜌 + 4𝜋

= 4𝜋
(
2
[
𝜌4

4

]𝜌=√2

𝜌=0
+ 1

)
= 12𝜋.

Exercise 13. We need a parametrization of 𝑆. We could notice that

(𝑥, 𝑦, 𝑧) ∈ 𝑆, ⇐⇒ 𝑧 = (𝑥2 + 𝑦2)1/4,

hence look at 𝑆 as the graph of a function 𝑓 (𝑥, 𝑦) := (𝑥2 + 𝑦2)1/4. In alternative, we may notice that

(𝑥, 𝑦, 𝑧) ∈ 𝑆, ⇐⇒ 𝑥2 + 𝑦2 = 𝑧4, ⇐⇒ 𝑥 = 𝑧2 cos \, 𝑦 = 𝑧2 sin \.

Thus
(𝑥, 𝑦, 𝑧) = Φ(𝑧, \) = (𝑧2 cos \, 𝑧2 sin \, 𝑧), (𝑧, \) ∈ [0, 1] × [0, 2𝜋] .

Therefore
𝜎2 (𝑆) =

∫
[0,1]×[0,2𝜋 ]

∥𝜕𝑧Φ ∧ 𝜕\Φ∥ 𝑑𝑧𝑑\.

Now,

𝜕𝑧Φ ∧ 𝜕𝑧Φ = det


®𝑖 ®𝑗 ®𝑘
2𝑧 cos \ 2𝑧 sin \ 1
−𝑧2 sin \ 𝑧2 cos \ 0

 =

(
−𝑧2 cos \,−𝑧2 sin \, 2𝑧3

)
,
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from which
∥𝜕𝑧Φ ∧ 𝜕\Φ∥ =

√︁
𝑧4 + 4𝑧6 = 𝑧2

√︁
1 + (2𝑧)2.

Therefore

𝜎2 (𝑆) =
∫
[0,1]×[0,2𝜋 ]

𝑧2
√︁

1 + (2𝑧)2 𝑑𝑧
𝑅𝐹
= 2𝜋

∫ 1

0
𝑧2

√︁
1 + (2𝑧)2 𝑑𝑧.

Now, since [
(1 + (2𝑧)2)3/2

] ′
=

3
2
(1 + (2𝑧)2)1/22(2𝑧) · 2 = 6 · 2𝑧(1 + (2𝑧)2)1/2,

by parts,

𝜎2 (𝑆) = 𝜋

[
1
6
(1 + (2𝑧)2)3/2𝑧

����𝑧=1

𝑧=0
− 1

6

∫ 1

0
(1 + (2𝑧)2)3/2 𝑑𝑧

]
= 𝜋

[
53/2

6
− 1

6

∫ 1

0
(1 + (2𝑧)2)3/2 𝑑𝑧

]
Setting 2𝑧 = sinh 𝑢, 𝑑𝑧 = 1

2 cosh 𝑢 𝑑𝑢, we have∫
(1 + (2𝑧)2)3/2 𝑑𝑧 =

∫
(cosh 𝑢)3 1

2
cosh 𝑢 𝑑𝑢 =

1
2

∫
(cosh 𝑢)4 𝑑𝑢

A straightforward integration by parts leads to∫
(cosh 𝑢)4 𝑑𝑢 =

3
8
𝑢 + 1

4
sinh 𝑢 cosh 𝑢

(
sinh2 𝑢 + 5

2

)
=

3
8

sinh−1 (2𝑧) + 1
2
𝑧
√︁

1 + 4𝑧2
(
4𝑧2 + 5

2

)
Thus ∫ 1

0
(1 + 4𝑧2)3/2 𝑑𝑧 =

3
8

sinh−1 (2) + 1
2
√

5
(
4 + 5

2

)
.

From this we obtain the numerical value of 𝜎2 (𝑆). □

Exercise 14. i) We have a separable variable equation

𝑦′ =
1
𝑡
(𝑒𝑦 − 1) = 𝑎(𝑡) 𝑓 (𝑦).

Solutions are constant or non constant, in this case they are obtained by separation of variables. Constant solutions
𝑦 ≡ 𝐶 are such that 0 = 1

𝑡
(𝑒𝐶 − 1), iff 𝑒𝐶 − 1 = 0, that is 𝐶 = 0. Non constant solutions fulfils

𝑦′

𝑒𝑦 − 1
=

1
𝑡
, ⇐⇒ 𝐺 (𝑦)′ = 1

𝑡
,

where

𝐺 (𝑦) =
∫

1
𝑒𝑦−1 𝑑𝑦

𝑢=𝑒𝑦 , 𝑦=log𝑢, 𝑑𝑦=𝑑𝑢/𝑢
=

∫
1

𝑢−1
𝑑𝑢
𝑢

=
∫

1
𝑢(𝑢−1) 𝑑𝑢 =

∫
1

𝑢−1 − 1
𝑢
𝑑𝑢 = log |𝑢 − 1| − log |𝑢 |

= log
��1 − 1

𝑢

�� = log |1 − 𝑒−𝑦 | .
Therefore, for a solution 𝑦,

(log |1 − 𝑒−𝑦 |)′ = 1
𝑡
, ⇐⇒ log |1 − 𝑒−𝑦 | = log |𝑡 | + 𝑐.

From this

|1 − 𝑒−𝑦 | = |𝑡 |𝑒𝑐 = 𝑘 |𝑡 |, 𝑘 > 00, ⇐⇒ 1 − 𝑒−𝑦 = ±𝑘 |𝑡 |, ⇐⇒ 𝑒−𝑦 = 1 ± 𝑘 |𝑡 |, ⇐⇒ −𝑦 = log(1 ± 𝑘 |𝑡 |),
and, since 𝑘 > 0 means ±𝑘 ≠ 0, we have

𝑦 = − log(1 + 𝑘 |𝑡 |), 𝑘 ≠ 0.
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Noticed that, for 𝑘 = 0, we get back 𝑦 ≡ 0, we can conclude that the general solution is

𝑦(𝑡) = − log(1 + 𝑘 |𝑡 |), 𝑘 ∈ R.

ii) Since 𝑦(1) = −1, imposing this to the general solution we obtain −1 = − log(1 + 𝑘), from which 1 + 𝑘 = 𝑒

and 𝑘 = 𝑒 − 1. □

Exercise 15. i) The statement is false. Indeed, by a rotation around the 𝑧−axis, the quantity 𝑥2 + 𝑦2 (which
is the square of the distance to the 𝑧−axis) remains constant. Thus 𝑥2 + 2𝑦2 = 𝑘 + 𝑦2. However, this last is not
constant along the same rotation. Therefore, if a point (𝑥0, 𝑦0, 𝑧0) ∈ 𝐷, that is it fulfills the characteristic inequality
that defines 𝐷, it is false that by rotating this point around the 𝑧−axis we will verify again the inequality.

ii) Volume:

_3 (𝐷) =
∫
𝑥2+2𝑦2⩽𝑧⩽4−3(𝑥2+2𝑦2 ) 1 𝑑𝑥𝑑𝑦𝑑𝑧

𝑅𝐹
=

∫
𝑥2+2𝑦2⩽4−3(𝑥2+2𝑦2 )

(∫ 4−3(𝑥2+2𝑦2 )
𝑥2+2𝑦2 𝑑𝑧

)
𝑑𝑥𝑑𝑦

=
∫
𝑥2+2𝑦2⩽1 4

(
1 − (𝑥2 + 2𝑦2)

)
𝑑𝑥𝑑𝑦

𝑥 = 𝜌 cos \,√
2𝑦 = 𝜌 sin \,

=
∫
𝜌2⩽1 4(1 − 𝜌2) 1√

2
𝜌 𝑑𝜌𝑑\

𝑅𝐹
= 2𝜋 4√

2

∫ 1
0 𝜌 − 𝜌3 𝑑𝜌 = 8𝜋√

2

(
1
2 − 1

4

)
= 2𝜋√

2
.

iii) Let ®𝐹 = (4𝑥𝑧,−𝑦2, 𝑦𝑧). The outward flux of ®𝐹 by 𝐷 can be computed by the divergence thm: we have

∫
𝑆

®𝐹 · ®𝑛𝑒 𝑑𝜎2 =

∫
𝐷

div ®𝐹 𝑑𝑥𝑑𝑦𝑑𝑧 =

∫
𝐷

(4𝑧 − 2𝑦 + 𝑦) 𝑑𝑥𝑑𝑦𝑑𝑧 =

∫
𝐷

(4𝑧 − 3𝑦) 𝑑𝑥𝑑𝑦𝑑𝑧.
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To compute this integral we proceed as above for the volume. We could go straight to adapted cylindrical
coordinates, obtaining∫

𝐷
(4𝑧 − 3𝑦) 𝑑𝑥𝑑𝑦𝑑𝑧 = 1√

2

∫
𝜌2⩽𝑧⩽4−3𝜌2

(
4𝑧 − 3√

2
𝜌 sin \

)
𝜌 𝑑𝑑\𝑑𝑧

𝑅𝐹
= 8𝜋√

2

∫
𝜌2⩽𝑧⩽4−3𝜌2 𝑧𝜌 𝑑𝑧𝑑𝜌 − 3

2

∫
𝜌2⩽𝑧⩽4−3𝜌2 𝜌

2
(∫ 2𝜋

0
sin \ 𝑑\

)
︸            ︷︷            ︸

=0

𝑑𝜌𝑑𝑧

= 8𝜋√
2

∫
𝜌2⩽𝑧⩽4−3𝜌2 𝑧𝜌 𝑑𝑧𝑑𝜌

𝑅𝐹
= 8𝜋√

2

∫
𝜌2⩽4−3𝜌2 𝜌

(∫ 4−3𝜌2

𝜌2 𝑧 𝑑𝑧

)
𝑑𝜌

= 8𝜋√
2

∫
𝜌2⩽1 𝜌

[
𝑧2

2

] 𝑧=4−3𝜌2

𝑧=𝜌2
𝑑𝜌 = 4𝜋√

2

∫ 1
0

(
(4 − 3𝜌2)2 − 𝜌4

)
︸                 ︷︷                 ︸

=8𝜌4−24𝜌2+16

𝑑𝜌

= 4𝜋√
2

(
8
[
𝜌5

5

]𝜌=1

𝜌=0
− 24

[
𝜌3

3

]𝜌=1

𝜌=0
+ 16

)
= 4𝜋√

2
48
5 .

For the second part of point iii) we propose two alternative solutions.
First method. Let 𝑆1 = 𝜕𝐷 ∩ {𝑧 = 𝑥2 + 2𝑦2 and 𝑆2 = 𝜕𝐷 ∩ {𝑧 = 4 − 3(𝑥2 + 2𝑦2)}. The outward flux of ®𝐹 by

𝜕𝐷 is the sum of the fluxes through 𝑆1 and 𝑆2. We can campute one of these two deduce the other by difference.
We compute the flux through 𝑆1. To this aim we need a parametrization. This is easily offered by the analytical
definition of 𝑆1, 𝑧 = 𝑥2 + 2𝑦2, thus we may use the standard parametrization

Φ(𝑥, 𝑦) := (𝑥, 𝑦, 𝑥2 + 2𝑦2), (𝑥, 𝑦) ∈ 𝐸 := {(𝑥, 𝑦) : 𝑥2 + 2𝑦2 ⩽ 1}.

Before computing the flux, we check if the normal ®𝑛Φ is inward or outward. Recall that ®𝑛Φ is the normalization of

𝜕𝑥Φ ∧ 𝜕𝑦Φ = (1, 0, 2𝑥) ∧ (0, 1, 4𝑦) = det

®𝑖 ®𝑗 ®𝑘
1 0 2𝑥
0 1 4𝑦

 = (−2𝑥,−4𝑦, 1).

From this, and in particular from the third component, we see that ®𝑛Φ is pointing inward. Thus, the component of
outward flux from 𝐷 on 𝑆1 is

−
∫
𝑆1

®𝐹 · ®𝑛Φ 𝑑𝜎2 = −
∫
𝐸

det


4𝑥(𝑥2 + 2𝑦2) −𝑦2 𝑦(𝑥2 + 2𝑦2)
1 0 2𝑥
0 1 4𝑦

 𝑑𝑥𝑑𝑦

=
∫
𝑥2+2𝑦2⩽1 8𝑥2 (𝑥2 + 2𝑦2) + (−4𝑦2 − 𝑦(𝑥2 + 2𝑦2)) 𝑑𝑥𝑑𝑦

The calculation is a bit long but elementary. We leave to the reader to complete it.
Second Method. Instead of completing the calculation in this way, we show an alternative way that sometimes

(and in certain specific situations) might simplify the task. We may look at 𝑆1 also as part of boundary of another
domain 𝐷:

𝐷 := {(𝑥, 𝑦, 𝑧) : 𝑥2 + 2𝑦2 ⩽ 𝑧 ⩽ 1}.
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In this case 𝜕𝐷 = 𝑆1 ∪ 𝑆3 where 𝑆3 is the ellypsis 𝑆3 := 𝜕𝐷 ∩ {𝑧 = 1} = {(𝑥, 𝑦, 1) : 𝑥2 + 2𝑦2 ⩽ 1} =: 𝐸3. The
outward flux of ®𝐹 from 𝐷 is ∫

𝜕�̃�

®𝐹 · ®𝑛𝑒 𝑑𝜎2 =

∫
𝑆1

®𝐹 · ®𝑛𝑒 𝑑𝜎2 +
∫
𝑆3

®𝐹 · ®𝑛𝑒 𝑑𝜎2

Then ∫
𝑆1

®𝐹 · ®𝑛𝑒 𝑑𝜎2 =

∫
𝑆3

®𝐹 · ®𝑛𝑒 𝑑𝜎2 −
∫
𝜕�̃�

®𝐹 · ®𝑛𝑒 𝑑𝜎2.

Now, on 𝑆3 clearly ®𝑛𝑒 = (0, 0, 1), thus∫
𝑆3

®𝐹 · ®𝑛𝑒 𝑑𝜎2 =

∫
𝑆3

(4𝑥𝑧,−𝑦2, 𝑦𝑧) · (0, 0, 1) 𝑑𝜎2 =

∫
𝑆3

𝑦𝑧 𝑑𝜎2
𝑧=1 𝑜𝑛 𝑆3

=

∫
𝑆3

𝑦 𝑑𝜎3.

By the above description, 𝑆3 = Φ(𝑥, 𝑦) = (𝑥, 𝑦, 1), (𝑥, 𝑦) ∈ 𝐸3, thus∫
𝑆3

𝑦 𝑑𝜎3 =

∫
𝐸3

𝑦∥𝜕𝑥Φ ∧ 𝜕𝑦Φ∥ 𝑑𝑥𝑑𝑦.

Now,
𝜕𝑥Φ ∧ 𝜕𝑦Φ = (1, 0, 0) ∧ (0, 1, 0) = (0, 0, 1),

so

∫
𝑆3

𝑦 𝑑𝜎3 =

∫
𝐸3

𝑦 𝑑𝑥𝑑𝑦 =

∫
𝑥2+2𝑦2⩽1

𝑦 𝑑𝑥𝑑𝑦

𝑥 = 𝜌 cos \,√
2𝑦 = 𝜌 sin \,

=
1
√

2

∫
𝜌2⩽1

1
√

2
𝜌 sin \ 𝜌 𝑑𝜌𝑑\ 𝑅𝐹

=
1
2

∫ 1

0
𝜌2

(∫ 2𝜋

0
sin \ 𝑑\

)
︸            ︷︷            ︸

=0

𝑑𝜌 = 0.

Finally, by the divergence thm (applied here on domain 𝐷), we have∫
𝜕�̃�

®𝐹·®𝑛𝑒 𝑑𝜎2 =

∫
�̃�

div ®𝐹 𝑑𝑥𝑑𝑦𝑑𝑧 =

∫
�̃�

(4𝑧−3𝑦) 𝑑𝑥𝑑𝑦𝑑𝑧 𝑎𝑑𝑎𝑝𝑡. 𝑐𝑦𝑙. 𝑐𝑜𝑜𝑟𝑑𝑠
=

1
√

2

∫
𝜌2⩽𝑧⩽1

(
4𝑧 − 3

√
2
𝜌 sin \

)
𝜌 𝑑𝜌𝑑𝑧𝑑\.

As above, the second term vanishes, thus we need just to compute∫
𝜌2⩽𝑧⩽1

𝑧𝜌 𝑑𝜌𝑑\𝑑𝑧
𝑅𝐹
= 2𝜋

∫ 1

0

(∫ 1

𝜌2
𝜌𝑧 𝑑𝑧

)
𝑑𝜌 = 2𝜋

∫ 1

0
𝜌

[
𝑧2

2

] 𝑧=1

𝑧=𝜌2
𝑑𝜌 = 𝜋

∫ 1

0
𝜌 − 𝜌5 𝑑𝜌 =

𝜋

3
.

Conclusion: ∫
𝑆1

®𝐹 · ®𝑛𝑒 𝑑𝜎2 = − 4𝜋
3
√

2
.

The other component can be computed by difference. □
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Exercise 16. To compute the area of the surface, we first need a parametrization of 𝑆. Since

𝑆 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑧 = 𝑥2 + 2𝑦2, 0 ⩽ 𝑧 ⩽ 1}

we can use the standard ”graph parametrization”, 𝑧 = 𝑓 (𝑥, 𝑦) := 𝑥2 +2𝑦2, defined on 𝐸 := {(𝑥, 𝑦) : 0 ⩽ 𝑥2 +2𝑦2 ⩽
1}. Then

𝜎2 (𝑆) =
∫
𝐸

√︁
1 + ∥∇ 𝑓 ∥2 𝑑𝑥𝑑𝑦 =

∫
𝑥2+2𝑦2⩽1

√︁
1 + ∥(2𝑥, 4𝑦)∥2 𝑑𝑥𝑑𝑦 =

∫
𝑥2+2𝑦2⩽1

√︁
1 + 4(𝑥2 + 4𝑦2) 𝑑𝑥𝑑𝑦

𝑥 = 𝜌 cos \,√
2𝑦 = 𝜌 sin \,

= 1√
2

∫
𝜌2⩽1

√︁
1 + 4𝜌2𝜌 𝑑𝜌𝑑\

𝑅𝐹
= 2𝜋√

2

∫ 1
0 (1 + 4𝜌2)1/2𝜌 𝑑𝜌 = 𝜋

6
√

2

[
(1 + 4𝜌2)3/2]𝜌=1

𝜌=0 = 𝜋

6
√

2

(
53/2 − 1

)
. □

Exercise 17. i) The general integral is

𝑦(𝑡) = 𝑐1𝑤1 (𝑡) + 𝑐2𝑤2 (𝑡) + 𝑢(𝑡),

where (𝑤1, 𝑤2) is a fundamental system of solutions for the homogeneous equation 𝑦′′ − 2𝑦′ + 𝑦 = 0 and 𝑢 is a
particular solution of the equation. The characteristic equation is

_2 − 2_ + 1 = 0, ⇐⇒ (_ − 1)2 = 0, ⇐⇒ _1,2 = 1.

Therefore, the fundamental system of solutions is 𝑤1 = 𝑒𝑡 , 𝑤2 = 𝑡𝑒𝑡 . To compute the particular solution 𝑢 we apply
the Lagrange formula

𝑢(𝑡) =
(
−

∫
𝑤2
𝑊

𝑓 𝑑𝑡

)
𝑤1 +

(∫
𝑤1
𝑊

𝑓 𝑑𝑡

)
𝑤2,

where 𝑊 is the wronskian

𝑊 = det

𝑤1 𝑤2

𝑤′
1 𝑤′

2

 = det

𝑒𝑡 𝑡𝑒𝑡

𝑒𝑡 (𝑡 + 1)𝑒𝑡

 = (𝑡 + 1)𝑒2𝑡 − 𝑡𝑒2𝑡 = 𝑒2𝑡 ,

and 𝑓 = 𝑓 (𝑡) = 𝑒2𝑡 . Thus

𝑢(𝑡) =
(
−

∫
𝑡𝑒𝑡

𝑒2𝑡 𝑒
2𝑡 𝑑𝑡

)
𝑒𝑡 +

(∫
𝑒𝑡

𝑒2𝑡 𝑒
2𝑡 𝑑𝑡

)
(𝑡𝑒𝑡 ) = −

(
𝑡𝑒𝑡 −

∫
𝑒𝑡 𝑑𝑡

)
𝑒𝑡 + 𝑒𝑡 𝑡𝑒𝑡 = 𝑒2𝑡 .

Conclusion: the general integral is

𝑦(𝑡) = 𝑐1𝑒
𝑡 + 𝑐2𝑡𝑒

𝑡 + 𝑒2𝑡 , 𝑐1, 𝑐2 ∈ R.

ii) To solve the Cauchy problem we impose the initial conditions 𝑦(0) = 1 and 𝑦′ (0) = 0 to the general integral.
First notice that

𝑦′ = 𝑐1𝑒
𝑡 + 𝑐2 (𝑡 + 1)𝑒𝑡 + 2𝑒2𝑡 ,

thus 
𝑦(0) = 1,

𝑦′ (0) = 0,
⇐⇒

{
𝑐1 + 1 = 1,
𝑐1 + 𝑐2 + 2 = 0, ⇐⇒


𝑐1 = 0,

𝑐2 = −2,

and the solution is 𝑦(𝑡) = −2𝑡𝑒𝑡 + 𝑒2𝑡 .
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iii) Again, we impose the passage conditions
𝑐1 + 1 = 0,

𝑐1𝑒 + 𝑐2𝑒 + 𝑒2 = 𝑎,

⇐⇒
{
𝑐1 = −1,
𝑐2 = 𝑎−𝑒2+𝑒

𝑒
.

We conclude that: for every 𝑎 ∈ R there exists a unique solution to the proposed problem. □

Exercise 18. i) 𝐷 is the intersection of the sphere {𝑥2 + 𝑦2 + 𝑧2 ⩽ 4} centred at (0, 0, 0) with radius 2, and the
region above the paraboloid 𝑧 = 1 − (𝑥2 + 𝑦2). Since both sets are described through constraint that depend on
(𝑥, 𝑦) through 𝑥2 + 𝑦2, 𝐷 is ivariant by rotations around the 𝑧−axis. We can start drawing the section of 𝐷 on the
𝑦𝑧 plane, that is

𝐷 ∩ {𝑥 = 0} = {(0, 𝑦, 𝑧) : 𝑦2 + 𝑧2 ⩽ 4, 𝑧 ⩾ 1 − 𝑦2}

hence we can rotate this section around the 𝑧− axis to get 𝐷. The result is shown by the following figure:

-2 2
y

z

-2 2
y

z

Figure 2. From left to right: plots of 𝑦2 + 𝑧2 ⩽ 4 and 𝑧 ⩾ 1 − 𝑦2, plot of 𝐷 ∩ {𝑥 = 0}, plot of 𝐷.

ii) We have

_3 (𝐷) =
∫
𝐷

1 𝑑𝑥𝑑𝑦𝑑𝑧
𝑐𝑦𝑙. 𝑐𝑜𝑜𝑟𝑑𝑠.

=

∫
𝜌2+𝑧2⩽4, 𝑧⩾1−𝜌2

𝜌 𝑑𝜌𝑑\𝑑𝑧
𝑅𝐹
= 2𝜋

∫
𝜌2+𝑧2⩽4, 𝑧⩾1−𝜌2

𝜌 𝑑𝜌𝑑𝑧

To apply RF notice that

𝜌2 + 𝑧2 ⩽ 4, 𝑧 ⩾ 1 − 𝜌2, ⇐⇒ 1 − 𝑧 ⩽ 𝜌2 ⩽ 4 − 𝑧2.

When 1 − 𝑧 < 0, that is 𝑧 > 1, the inequality writes

𝜌2 ⩽ 4 − 𝑧2, ⇐⇒


𝑧2 ⩽ 4,

0 ⩽ 𝜌 ⩽
√

4 − 𝑧2,

⇐⇒


1 < 𝑧 < 2,

0 ⩽ 𝜌 ⩽
√

4 − 𝑧2,

while, when 𝑧 ⩽ 1, the inequality writes,
1 − 𝑧 ⩽ 4 − 𝑧2,

√
1 − 𝑧 ⩽ 𝜌 ⩽

√
4 − 𝑧2

⇐⇒


1−
√

13
2 ⩽ 𝑧 ⩽ 1,

√
1 − 𝑧 ⩽ 𝜌 ⩽

√
4 − 𝑧2.
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Therefore

_3 (𝐷) 𝑅𝐹
= 2𝜋 ©«

∫ 1

1−
√

13
2

∫ √
4−𝑧2

√
1−𝑧

𝜌 𝑑𝜌 𝑑𝑧 +
∫ 2

1

∫ √
4−𝑧2

0
𝜌 𝑑𝜌 𝑑𝑧

ª®¬ = 2𝜋 ©«
∫ 1

1−
√

13
2

[
𝜌2

2

]𝜌=√4−𝑧2

𝜌=
√

1−𝑧
𝑑𝑧 +

∫ 2

1

[
𝜌2

2

]𝜌=√4−𝑧2

𝜌=0
𝑑𝑧

ª®¬
= 𝜋

(∫ 1

1−
√

13
2

(
4 − 𝑧2 − (1 − 𝑧)

)
𝑑𝑧 +

∫ 2

1
4 − 𝑧2 𝑑𝑧

)
= 𝜋

(∫ 2

1−
√

13
2

4 − 𝑧2 𝑑𝑧 +
∫ 1

1−
√

13
2

𝑧 − 1 𝑑𝑧

)

= 𝜋

(
6 + 2

√
13 −

[
𝑧3

3

] 𝑧=2

𝑧= 1−
√

13
2

+
[
𝑧2

2

] 𝑧=1

𝑧= 1−
√

13
2

− 1 +
√

13
2

)

= 𝜋

(
6 + 2

√
13 − 1

3

(
1 −

(
1−

√
13

2

)3
)
+ 1

2

(
1 −

(
1−

√
13

2

)2
)
− 1+

√
13

2

)
.

iii) To compute the outward flux we apply the divergence theorem. We have∫
𝜕𝐷

®𝐹 · ®𝑛𝑒 𝑑𝜎2 =

∫
𝐷

div ®𝐹 𝑑𝑥𝑑𝑦𝑑𝑧 =

∫
𝐷

3 𝑑𝑥𝑑𝑦𝑑𝑧 = 3_3 (𝐷).

To compute the component of this flux on 𝜕𝐷 ∩ {𝑥2 + 𝑦2 + 𝑧2 = 4} we compute the component along 𝜕𝐷 ∩ {𝑧 =
1 − (𝑥2 + 𝑦2)}. The standard parametrization is

Φ(𝑥, 𝑦) := (𝑥, 𝑦, 1 − (𝑥2 + 𝑦2)), (𝑥, 𝑦) ∈ 𝐸 =

{
(𝑥, 𝑦) : 𝑥2 + 𝑦2 ⩽

1 +
√

13
2

}
.

Let’s compute the normal ®𝑛Φ. We have

𝜕𝑥Φ ∧ 𝜕𝑦Φ = det

®𝑖 ®𝑗 ®𝑘
1 0 −2𝑥
0 1 −2𝑦

 = (2𝑥, 2𝑦, 1) ,

thus
®𝑛Φ ∥ (2𝑥, 2𝑦, 1)

from which we see that ®𝑛Φ is pointing inward for 𝐷, that is ®𝑛Φ = −®𝑛𝑒. Therefore∫
𝜕𝐷∩{𝑧=1−(𝑥2+𝑦2 ) }

®𝐹 · ®𝑛𝑒 𝑑𝜎2 =

∫
𝐸

det


∇ ®𝐹
𝜕𝑥Φ

𝜕𝑦Φ

 𝑑𝑥𝑑𝑦 =

∫
𝐸

det


1 1 1
1 0 −2𝑥
0 1 −2𝑦

 𝑑𝑥𝑑𝑦 =

∫
𝐸

2𝑥 + 2𝑦 𝑑𝑥𝑑𝑦

= 2
∫
𝑥2+𝑦2⩽ 1+

√
13

2

(𝑥 + 𝑦) 𝑑𝑥𝑑𝑦 𝑝𝑜𝑙. 𝑐𝑜𝑜𝑟𝑑𝑠
= 2

∫
0⩽𝜌⩽

√︃
1+

√
13

2

𝜌(cos \ + sin \) 𝑑𝜌𝑑\

𝑅𝐹
= 2

∫ √︃
1+

√
13

2

0
𝜌

∫ 2𝜋

0
(cos \ + sin \) 𝑑\︸                       ︷︷                       ︸

=0

𝑑𝜌 = 0. □

Exercise 19. An immediate parametrization of 𝑆 is of course

𝑆 = Φ(𝐸), Φ(𝑥, 𝑦) := (4 − (𝑦2 + 𝑧2), 𝑦, 𝑧), (𝑦, 𝑧) ∈ 𝐸 :=
{
(𝑦, 𝑧) : 2 ⩽ 𝑦2 + 𝑧2 ⩽ 3

}
.
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Then
𝜎2 (𝑆) =

∫
𝐸

∥𝜕𝑦Φ ∧ 𝜕𝑧Φ∥ 𝑑𝑦𝑑𝑧.

Notice that

𝜕𝑦Φ ∧ 𝜕𝑧Φ = det


®𝑖 ®𝑗 ®𝑘
−2𝑦 1 0
−2𝑧 0 1

 = (1, 2𝑦, 2𝑧) , =⇒ ∥𝜕𝑦Φ ∧ 𝜕𝑧Φ∥ =
√︃

1 + 4(𝑦2 + 𝑧2).

Therefore

𝜎2 (𝑆) =

∫
2⩽𝑦2+𝑧2⩽3

√︃
1 + 4(𝑦2 + 𝑧2) 𝑑𝑦𝑑𝑧 𝑝𝑜𝑙. 𝑐𝑜𝑜𝑟𝑑𝑠

=

∫
2⩽𝜌2⩽3

√︃
1 + 4𝜌2𝜌 𝑑𝜌𝑑\

𝑅𝐹
= 2𝜋

∫ √
3

√
2
(1 + 4𝜌2)1/2𝜌 𝑑𝜌

=
𝜋

6

[(
1 + 4𝜌2

)3/2
]𝜌=√3

𝜌=
√

2
=

𝜋

6

(√
13 − 3

)
. □


