Engineering and Environmental Geophysics

Seismic prospecting

Outline

Methods for engineering geophysics

- seismic methods (refraction / reflection / surface wave)
- electrical methods (ERT)
- E-M methods (FDEM, RADAR)
- case histories

Method	Structure	Dynamic
Seismic	++	
Electro-Magnetic	+	++
DC resistivity methods ERT	++	++
Ground Penetration Radar	++	+
Distributed Temp. Sensing		++
Magnetics	+	
Gravimetry	+	+
Spectral Induced Polarization	+	
Self Potential		+
Borehole logs	+ +	+

Physical Properties (P)

- Seismic Elastic moduli and density
- Gravimetry : Density
- Magnetic meth. Magnetic susceptibility
- ERT meth.
 Electrical resistivity
- Electro-magnetic meth.
 Electrical conductivity
- Induced Polarization
 Electrical complex conductivity
- Spontaneous Potentials Electrical conductivity
- Ground penetrating
 Padar

 Dielectric constant

Seismic Methods

Study the wave elastic propagation in the subsoil and furnish the mechanical parameters

Physics parameter P
=
Elastic properties

The seismic method

P = Physical parameter Elastic moduli/ density

Borehole seismic

Seismic Methods

Surface seismic

Reflection seismic

Refraction seismic

Surface wave seismic

Expl. Seismologi course course seismic

Refraction seismic

Surface wave seismic

Seismic Methods

- Methods
- Equipments
- surveys design
- processing

Seismic Methods

Borehole Seismic

Surface seismic

Seismic method Surface methods

Energy and receivers on surface

Seismic method Surface methods

Surface wave methods

Study the DISPERSION of surface wave d

To retrieve (indirectly) Vs

$$V_{s,30} = \frac{30}{\sum_{i=1,n} H_i / V_{si}} [m/s]$$

e.g. seismic soil classification parameter

wave motion - Wave equation

u, v, w = displacement in x, y, z

strain (ε) tensor

$$\varepsilon_{xx} = du/dx$$

$$\varepsilon_{yy} = dv/dy$$

$$\varepsilon_{zz} = dw/dz$$

Stress-strain

...a relation between strain and stress...

Dilatation _____

$$\Delta = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}$$

Hooke law (isotropic media)

Normal stress (Example for x)

$$\sigma = \lambda \Delta + 2 \mu \epsilon_y$$
 for x

for x,y,z

Pure shear stress (Example for y)

$$\sigma_y = \mu \epsilon_y$$

lamè constant

 λ μ compress. Shear

wave motion - Wave equation

density

Mass of the cube $dm = \rho dxdydz$

Newton Law F = m*a

stress

$$\rho \int \frac{d^2u}{dt^2} = \frac{d\sigma}{dx} \times x + \frac{d\sigma}{dy} \times y + \frac{d\sigma}{dz} \times z$$

Displacement u

Hooke law

dilatation

$$\rho \frac{d^2 u}{dt^2} = (\lambda + \mu) \frac{d\Delta}{dx} + \mu \Delta^2 u$$

diff for x, y, z

Lame parameters

Dilatation

laplacian

$$\rho \frac{d^2 \Delta}{d t^2} = (\lambda + 2\mu) \nabla^2 \Delta$$
 Wave Equation!

Lame parameters

wave motion - Wave equation

In seismic are most used the compressibility modulus

Bulk modulus K (rather than λ)

The increment in pressure need to cause an increase of density

$$K = \lambda + (2/3 G)$$

And shear modulus expressed as G (rather than μ)

$$G = \mu$$

wave motion - Wave equation

P-waves

Compressional wave

Volumetric deformation

3

S-waves

Shear wave

Tangential deformation

Wave propagation in homogenous, elastic, isotrope media

Body waves

Solution of differential wave equation

P wave

$$\frac{\partial^2 \overline{\epsilon}}{\partial t^2} = \frac{\lambda + 2G}{\rho} \nabla^2 \overline{\epsilon}$$

$$\varepsilon = \frac{\Delta V}{V_0}$$
Volume
Iniziale

Volumetric deformation (strain)

S wave

$$\frac{\partial^2 \Omega}{\partial t^2} = \frac{G}{\nabla^2 \Omega}$$

$$G = shear modulus$$

 λ = compression modulus

 ρ = density

Tangential deformation

Wave propagation in homogenous, elastic, isotrope media

Solution of differential wave equation

$$\rho \frac{d^2 \Delta}{d t^2} = (\lambda + 2G) \nabla^2 \Delta$$

P wave

$$\frac{\partial^2 \overline{\epsilon}}{\partial t^2} = \frac{\lambda + 2G}{\rho} \nabla^2 \overline{\epsilon}$$

S wave

$$\frac{\partial^2 \Omega}{\partial t^2} = \frac{G}{\rho} \nabla^2 \Omega_z$$

Relationship

Relationship

$$\frac{\partial^2 \overline{\epsilon}}{\partial t^2} = \frac{\text{[velocity of propagation]}}{\nabla^2 \overline{\epsilon}}$$

$$\frac{\partial^2 \Omega_x}{\partial t^2} = \int_{\text{of propagation}}^{\text{[velocity of propagation]}} \nabla^2 \Omega_x$$

Wave propagation in homogenous, elastic, isotrope media

Solution of differential wave equation

P wave

$$\frac{\partial^2 \overline{\epsilon}}{\partial t^2} = \frac{\lambda + 2G}{\rho} \nabla^2 \overline{\epsilon}$$

Vp² / Velocity of Propagation P wave

$$V_P = \sqrt{\frac{\lambda + 2G}{\rho}}$$

S wave

$$\frac{\partial^2 \Omega_z}{\partial t^2} = \frac{G}{\rho} \nabla^2 \Omega_z$$

$$V_S = \sqrt{\frac{G}{\rho}}$$

Body wave P Wave

Compression and dilatation

Compressiblity

Shear modulus

→ density

Body waves

S waves

Shear waves

Shear modulus

NB not dependent

on compressibility!

density

In fluids
G= 0
Vs=0

Seismic waves

P Velocity ≈ 1.9 S velocity

Type of formation	P wave velocity (m/s)	S wave velocity (m/s)	Density (g/cm ³)	Density of constituent crystal (g/cm³)
Scree, vegetal soil	300-700	100-300	1.7-2.4	-
Dry sands	400-1200	100-500	1.5-1.7	2.65 quartz
Wet sands	1500-2000	400-600	1.9-2.1	2.65 quartz
Saturated shales and clays	1100-2500	200-800	2.0-2.4	-
Marls	2000-3000	750-1500	2.1-2.6	-
Saturated shale and sand sections	1500-2200	500-750	2.1-2.4	-
Porous and saturated sandstones	2000-3500	800-1800	2.1-2.4	2.65 quartz
Limestones	3500-6000	2000-3300	2.4-2.7	2.71 calcite
Chalk	2300-2600	1100-1300	1.8-3.1	2.71 calcite
Salt	4500-5500	2500-3100	2.1-2.3	2.1 halite
Anhydrite	4000-5500	2200-3100	2.9-3.0	-
Dolomite	3500-6500	1900-3600	2.5-2.9	(Ca, Mg) CO ₃ 2.8-2.9
Granite	4500-6000	2500-3300	2.5-2.7	-
Basalt	5000-6000	2800-3400	2.7-3.1	-
Gneiss	4400-5200	2700-3200	2.5-2.7	2
Coal	2200-2700	1000-1400	1.3-1.8	-
Water	1450-1500	-	1.0	-
Ice	3400-3800	1700-1900	0.9	-
Oil	1200-1250	_	0.6-0.9	2

Surface waves

For constructive interference at the boundary with air

2 types: Rayleigh waves Love waves

Differently from body waves (3d) they propagate in 2d, Attenuati is less f(distance r):

Surface waves

body waves

Rayleigh waves are mostly adopted

Generated from P and SV waves interference at surface

Motus is elliptical

Surface waves

Rayleigh waves

Love waves

(S wave polarised in surface)

Bach at surface

Seismic energy is transmitted/reflected/refracted

Huygens-Fresnel principle

Given a source (S) generating a spheric wavefront, each point of the primary wavefront act as a secondary source generating waves of the same characteristics of the primary one (wavelength, frequency, velocity d'onda),

except if the media changes...

Snell Law

In presence of impedance contrast the ray is reflected with the same incidence angle

$$=\frac{\rho_2 V_2}{\rho_1 V_1} > 1$$

Reflection

 λ = wavelength

RESOLUTION: the 'Fresnel zone'

L= total lenght array

 $f(\lambda, L, z)$

z= depth

 $\lambda = V / f$

Seismic methods

RESOLUTION: the 'Fresnel zone' $f(\lambda, L, z)$ $\lambda = V / f$

Vertical and horizontal resolution Fresnel zone

Vertical Resolution of a seismic pulse: $\frac{1}{4}$ -1/8 of a wavelength

Example: v=2km/s, $50Hz \rightarrow resolution \approx 10 m$

-> Sharpening of the pulse desirable -> Deconvolution -> towards impulse response of medium

Horizontal Resolution determined by the detector spacing and the Fresnel zone: $w=(2z\lambda)^{1/2}$ for $z >> \lambda$. @ 100 m depth $w \approx 90$ m

DIPARTIMENTO DI GEOSCIENZE

EXTRA MATERIAL

Studi di Padova

Reflections

We generate waves that reflect on surface interface, having information on shape and depths if DEEP

Structures

REFLECTION SEISMIC

Reflection from different Layering in the subsoil

Seismic method

Recording signal emitted by the source S using the receiver R

R are the receivers

Geophones

Two Way travel Time TWT

Record signal in time

Seismogram space/time

Seismic Reflection

reflection travel-time

spazio -tempo

time =
$$\frac{EA + AG}{V_1}$$

$$EA = AG = \left[\left(\frac{x}{2} \right)^2 + h_1^2 \right]^{1/2}$$

time =
$$\frac{\left(x^2 + 4h_1^2\right)^{1/2}}{V_1}$$

$$T^2x = T^2_0 + X^2 / V_1^2$$

2 equations 2 unknowns

- Upper layer velocity V1
- Thickness of upper layer h

$$T_0 = 2h/V_1$$

$$T^2x = T^2_0 + X^2 / V_1^2$$

Seismic method

Seismic methods

Reflections on Seismograms are REFLECTION HYPERBOLA

Seismogram (space-time)

$$T^{2}x = T^{2}_{0} + X^{2}/V1^{2}$$
 $T_{0} = 2H/V1$

space (m)

$$T^2x = T^2_0 + X^2/V_1^2$$

 $T_0 = 2h/V1$

The arrival times t(x) of reflections from an interface at depth h as a function of offset x are given as

reflection ray-path

reflection points

terminating reflecto

$$t(x) = \frac{1}{v}\sqrt{x^2 + 4h^2}$$

$$t^{2} = \frac{4h^{2}}{v^{2}} + \frac{x^{2}}{v^{2}} = t_{0}^{2} + \frac{x^{2}}{v^{2}}$$

$$\Delta T = t_x - t_0 \approx \frac{x^2}{2V^2 t_0}$$

Normal moveout (NMO)

Easiest way to find V1

EXTRA MATERIAL Metodi Sismici

Display

sismica a riflessione - Processing complesso

Display

EXTRA MATERIAL Static Corrections (Topographic Correction)

(Topographic

Time corr = hr / Vw

Assumed velocity of the Vw material above

Thickness of the weathered layer

Es. Correzione delle statiche

Static corrections

Correct for surface topography and the weathered surface layer

Surface topography

Time correction to each trace:

$$t_g = \left(E_g - E_d\right)/V$$

Source depth

$$t_s = \left(E_s - E_d\right)/V$$

total correction

$$t_e = t_s + t_g$$

Shift each trace by this amount to line up deeper reflectors

Editing and Muting = clean the raw data EXTRA MATERIAL

Preprocessing Editing and muting

Manually cleaning up the data

- Remove dead traces
- Remove noisy traces
- Switch polarity on reversed traces
- "Cut" out unwanted signal e.g. pre-arrival noise, direct arrival, ground roll

Editing and muting

EXTRA MATERIAL Multiples Muting

Reflected energy back up again following a reflection back down at the surface.

EXTRA MATERIAL Velocity Analysis

Overcorrected by too slow velocity

Normal MOVE OUT CORRECTION

EXTRA MATERIAL Velocity Analysis

Under corrected by too fast velocity

Normal MOVE OUT CORRECTION

EXTRA MATERIAL Velocity Analysis

NMO - Normal Moveout Correction Now Corrected

Normal MOVE OUT CORRECTION

Metodi Sismici

Es. Normal Move Out Correction

Es. Normal Move Out -Velocity analysis

Multi-layers system

Migration

FROM TIME DOMAIN to SPACE DOMAIN

Seismic migration is the process by which seismic events are geometrically re-located in either space or time to the location the event occurred in the subsurface rather than the location that it was recorded at the surface, thereby creating a more accurate image of the subsurface.

Metodi Sismici

Migration

FROM TIME DOMAIN to

SPACE DOMAIN

es.
Kirchhoff migration
EXTRA MATERIAL

Metodi Sismici

Migrazione: Passare da DOMINIO TEMPO a DOMINIO PROFONDITA' (note le velocità)

Seismic methods

Reflection seismic

seismic imaging

Rock Basement

Example of engineering application Vajont landslide seismic reflection

Seismic Methods

Expansive, complex processing

For the engineering purpose, most diffused is the:

REFRACTION seismic

Studying refracted waves to characterise velocity and depth of buried layers

Critically refracted waves

Head-waves

Seismic methods

REFREACTION

Time arrival study in function of distance of travel paths

Refraction Seismic mehtods

Impedance Contrast =
$$\frac{\rho_2 V_2}{\rho_1 V_1}$$
 > 1 REFRACTION

If V2 < V1 NO REFRACTION!

Refraction seismic

Measuring the time arrival of the generated seismic waves....

Refraction seismic

Measuring the time arrival of the generated seismic waves....

first break Picking
Direct wave (slow) Refracted wave (fast)

2 straight lines are identified (In the case of 2 layers)

REFRACTION

Measuring time arrival

Direct and refracted Waves

Slope of the dromocrhone =
$$\frac{1}{V}$$

Refraction Seismic

Time arrivals first break Picking

In a space-time diagram (dromochrone)

Dromochrone = Travel-Time curves

REFRACTION SEISMIC

I) Slope of the dromochrone

2) Xcross
Crossover
point distance

3) T₀
Intercept time

REFRACTION SEISMIC

Velocity and thickness of the layers!

Acquisition

$$t_{direct} = \frac{x}{V_1}$$

$$t_{direct} = \frac{x}{V_{1}}$$

$$t_{refract} = \frac{2H}{V_1 \cos i_c} + \frac{x - 2H \tan i_c}{V_2}$$

$$= \frac{x}{V_{2}} + 2H\sqrt{\frac{1}{V_{1}^{2}} - \frac{1}{V_{2}^{2}}}$$

$$t_{refract} = \frac{2H}{V_{1} \cos i_{c}} + \frac{x - 2H \tan i_{c}}{V_{2}}$$

$$= \frac{x}{V_{2}} + 2H\sqrt{\frac{1}{V_{1}^{2}} - \frac{1}{V_{2}^{2}}}$$

$$x_{c} = 2H\sqrt{\frac{V_{2} + V_{1}}{V_{2} - V_{1}}}$$

$$H = \frac{x_{c}}{2} \sqrt{\frac{V_{2} - V_{1}}{V_{2} + V_{1}}}$$

REFRACTION SEISMIC

Multiple Layers

$$h_n = rac{V_n}{cos(i_n)} \left(rac{T0_{n+1}}{2} - \sum_{j=0}^{n-1} h_j \sqrt{rac{1}{V_j^2} - rac{1}{V_{j+1}^2}}
ight)$$

T0n = n intercept time

Non planar Deepening refractor

2D section

Right shot

$$i_c + \theta = \sin^{-1} \left(\frac{V_1}{V_{2,down}} \right)$$

$$i_c - \theta = \sin^{-1} \left(\frac{V_1}{V_{2,up}} \right)$$

$$\sin i_c = \frac{V_1}{V_2}$$

Two Equations – Two Unknowns

Source

24 receivers @ 3·m spacing

24 receivers @ 3-m spacing

Source

24 receivers @ 3·m spacing

24 receivers @ 3-m spacing

DIPARTIMENTO DI GEOSCIENZE

Source

24 receivers @ 3·m spacing

24 receivers @ 3-m spacing

Shot 3

3 layers

Hidden layer limit (low velocity Zone LVZ)

2 layers

C3.2 Seismic refraction - with a low velocity zone (LVZ)

- Time Intercept and Crossover Distance Methods (planar refractors)
- Common Reciprocal Methods (non-planar refractors)
 - Plus-Minus Method
 - ABC Method
 - Hagiwaras Method
- Generalized Reciprocal Methods (non-planar refractors)
 - Delay Time Method
 - Hales Method

Seismic Refraction Common Reciprocal Methods: ABC method

Combine the refraction times recorded along A-C, B-C, and A-B:

$$t_{AC} + t_{CB} - t_{AB} \approx 2 t_{Delay(C)} = \frac{2h_C \cos i_c}{V_1}$$

The ABC method

Get the thickness in C (Hc) (Knowing velocities)

Knowing arrival times in A, B, C and Velocities, you get HC

Therefore:

$$h_C \approx \frac{V_1}{2\cos i_c} \left(t_{AC} + t_{CB} - t_{AB}\right).$$

Note the typical time-to-depth conversion factor:

$$\frac{V_1}{\cos i_c} = \frac{V_1}{\sqrt{1 - \sin^2 i_c}} = \frac{V_1 V_2}{\sqrt{V_2^2 - V_1^2}}.$$

Delay Time method

Consider a nearly horizontal, shallow interface with strong velocity contrast (a typical case for weathering layer).

In this case, we can separate the times associated with the source and receiver vicinities:

$$t_{SR} = t_{SX} + t_{XR}.$$

Relate the time t_{SX} to a time along the refractor, t_{BX} $t_{SX} = t_{SA} - t_{BA} + tB_{X} = t_{Sdelay} + X/V_{2}$

$$t_{SX} = t_{SA} - t_{BA} + tB_X = t_{Sdelay} + X/V_2$$

$$t_{S Delay} = \frac{SA}{V_{1}} - \frac{BA}{V_{2}} = \frac{h_{s}}{V_{1} \cos i_{c}} - \frac{h_{s} \tan i_{c}}{V_{2}} = \frac{h_{s}}{V_{1} \cos i_{c}} (1 - \sin^{2} i_{c}) = \frac{h_{s} \cos i_{c}}{V_{1.}}$$
Note that $V_{2} = V_{1} / \sin i_{c}$

Thus, source and receiver delay times are:

$$t_{S,RDelay} = \frac{h_{s,r}cosi_c}{V_{1.}}$$

and
$$t_{SR} = t_{SDelay} + t_{RDelay} + \frac{SR}{V_{2}}$$

Plus-Minus Method

Assume that we have recorded two headwaves in opposite directions, and have estimated the velocity of overburden, $V_{1.}$

How can we map the refracting interface?

Solution:

We want to estimate Delay time in D (Td) to get thickness below point D, and Velocities of refractor V2

Plus-Minus Method

Solution:

Profile
$$S_1 \rightarrow S_2$$
: $t_{S_1D} = \frac{x}{V_2} + t_{S_1} + t_{D}$; $t_{SR} = t_{SDelay} + t_{RDelay} + \frac{SR}{V_2}$

$$t_{S_1D} = \frac{x}{V_2} + t_{S_1} + t_{D},$$

$$t_{SR} = t_{S Delay} + t_{R Delay} + \frac{SR}{V_{2}}$$

Profile
$$S_2 \rightarrow S_1$$
:

> Profile
$$S_2 \to S_1$$
: $t_{S_2D} = \frac{(SR - x)}{V_2} + t_{S_2} + t_{D}$.

Form PLUS travel-time:

$$t_{PLUS} = t_{S_1D} + t_{S_2D} = \frac{SR}{V_2} + t_{S_1} + t_{S_2} + 2t_D = t_{S_1S_2} + 2t_D.$$

Hence:
$$t_D = \frac{1}{2} (t_{PLUS} - t_{S_1 S_2}).$$

To determine i_{s} (and depth), still need to find V_{s} .

Plus-Minus Method

To determine V_2 :

Form MINUS travel-time:

this is a constant!

$$t_{MINUS} = t_{S_1D} - t_{S_2D} = \frac{2x}{V_2} - \frac{SR}{V_2} + t_{s_1} - t_{s_2}.$$

Hence:

$$slope[t_{MINUS}(x)] = \frac{2}{V_2}.$$

Plotting t_{S1D} - t_{S2D} vs 2x give you the slope
= $1/v_2$

(For several geophones)

Plus-Minus Method

Note that
$$V_2 = V_1 / \sin i_c$$

$$t_D = \frac{h_D cosi_c}{V_{1.}}$$

$$slope[t_{MINUS}(x)] = \frac{2}{V_2}.$$

You have (V1),V2,, ic and can retrieve Hd (thickness below D) for each geophones

Plus-Minus Method

The slope is usually estimated by using the *Least Squares method*.

Least square regression

If we add up all of the errors, the sum will be zero. To measure overall error we square the errors and find a line that minimizes this sum of the squared errors.

$$\sum {e_t}^2 = \sum (Y_i - \overline{Y}_i)^2$$

The method of least squares finds values of the intercept and slope coefficient that minimize the sum of the squared errors.

Plus-Minus Method

The slope is usually estimated by using the *Least Squares method*.

<u>Drawback</u> of this method – averaging over the pre-critical region.

Generalised Reciprocal Method

Introduces offsets ('XY') in travel-time readings in the forward and reverse shots;

so that the imaging is targeted on a compact interface region.

Proceeds as the plus-minus method;

Determines the 'optimal' XY:

- 1) Corresponding to the most linear *time-depth function*;
- 2) Corresponding to the *most detail* of the refractor.

The velocity analysis function:

$$t_{V} = \frac{1}{2} (t_{S_{1}D} - t_{S_{2}D} + t_{S_{1}S_{2}}),$$

should be linear, slope = $1/V_2$;

Generalised Reciprocal Method

The *time-depth function*:

$$t_D = \frac{1}{2} (t_{S_1D} + t_{S_2D} - t_{S_1S_2} - \frac{XY}{V_2}).$$

this is related to the desired image:

$$h_D = \frac{t_D V_1 V_2}{\sqrt{V_2^2 - V_1^2}}$$

 The two-dimensional (2D) velocity structure is estimated by minimizing the difference between predicted and observed first-arrival travel times (i.e., an inversion procedure).

Computational Refraction tomography

Seismic Refraction Examples

Seismic Refraction

Seismic Refraction

REFRACTION SEISMIC

Dozens of shot, dozen of ray paths

Seismic tomography

Velocities fields In 2D -3D

Seismic Tomography

2D section of velocities distribution

Do I need this course?

Practical problem:
Design a classical net
defence for rock falls

Nails must be anchored in the solid rock underneath debris...

How to do?

Seismic Refraction

Source: Caterpillar

Seismic Methods

Blind to inversion velocity!

Generate waves at the surface and measure time arrivals with receivers placed in the borehole at several depth.

Compute the velocity of the ray path

Several shots in the borehole keeping fixed a receiver

SEISMIC

Acquisition methods

I. SEISMIC WAVE SOURCES

2. RECEIVERS OF MOTION (Geophones)

3. RECORDING (Seismograph)

I. SEISMIC WAVE SOURCES

Must be:

- POWERFUL

(Narrow in time, wide in frequency) << λ

 $\lambda = v/f$

- RIPETIBLE

To perform stack (sum) of the single and increase the signal/noise ratio

IMPULSIVE

Sources

VIBROTIONAL

I. SEISMIC WAVE SOURCES

Sledge Hammer (Impulsive)

Vibroseis

(vibro)

I. SEISMIC WAVE SOURCES

Accelerated Mass (imp)

f = m*a

Seismic gun (imp)

Explosive (imp)

I. SEISMIC WAVE SOURCES

30kg tnt

I. SEISMIC WAVE SOURCES

IMPULSIVE

Seismic trace We want collect

I. SEISMIC WAVE SOURCES

Vibrational

VIBROSEIS TRUCK (Leader of industrial reflection surveys)

Source of vibration with constant replicable signals
(Called the **sweep**)

e,g, 1Hz -5 Hz 8 seconds sweep

I. SEISMIC WAVE SOURCES

VIBROSEIS

Convolution

$$u(t) = sw(t)*\dot{e}(t)$$

Recorded Seismogram

Sweep

Earth Filter

I. SEISMIC WAVE SOURCES

Cross correlation of the Sweep (source) with the recorded signal

I. SEISMIC WAVE SOURCES

VIBROSEIS

Examples with 3 Layers

I. SEISMIC WAVE SOURCES

Increase source quality

Better to put source in depth, avoiding weathered layer that attenuates the signal

+ Energy - Attenuation

Topography is relevant

In case you can refer to a unique
Topo
(DATUM
Static correction)

I. SEISMIC WAVE SOURCES

Increase source quality

Execute repeated measurements to sum all the recorded signals STACKING

Signal is in phase, noise no!
Increase signal to noise ratio (S/N)

Help the picking

RECEIVERS

GEOPHONES

RECEIVERS

GEOPHONES

I.BOREHOLE SEISMIC

Down Hole

It is crucial the contact between sensors and borehole: clipping operation.

BOREHOLE GEOPHONE

RECEIVERS

GEOPHONES

vertical

Surface ones

Horizontal

Tri-components

RECEIVERS

GEOPHONES

They are divided in base of the frequency response

NATURAL (CORNER) FREQUENCY OF THE GEOPHONE

Corner Freq.

Transfer function (Instrumental response) of a geophone

They are the high-pass filters

VERY IMPORTANT THE CORRECT CHOICE:

E.g. refraction: 50-100 Hz

SW: 4 Hz

RECEIVERS

GEOPHONES

In sea HYDROPHONES

From 4 Hz to Very high frequency

RECEIVER INSTALLATION

USUALLY equal-spaced Array

<< dx (spacing) >> Resolution

>> x (total lenght) >> Penetration

A compromise between numbers of receivers, spacing, total length, <u>power of the source</u>

RECEIVER INSTALLATION

- Planted
- drilled in holes

- Leaning on pavement....

3. RECORDED (SEISMOGRAPH)

Digital (16-24 bit)

Multi-channels (24-48- n....)

COMPLEX AND EXPANSIVE INSTRUMENTS

Seismic Logistic

Methods	GEOPHONES	RESOLUTION	DEPTH
Refraction	24- N	cm -m	m - Km

COST: - Geophones 100 \$

- cables 5k \$
- -Seismograph 24 nodes 25k\$