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Abstract
Non destructive investigation of soil properties is crucial when trying to
identify inhomogeneities in the ground or the presence of conductive sub-
stances. This kind of survey can be addressed with the aid of electromagnetic
induction measurements taken with a ground conductivity meter. In this paper,
starting from electromagnetic data collected by this device, we reconstruct the
electrical conductivity of the soil with respect to depth, with the aid of a
regularized damped Gauss–Newton method. We propose an inversion method
based on the low-rank approximation of the Jacobian of the function to be
inverted, for which we develop exact analytical formulae. The algorithm
chooses a relaxation parameter in order to ensure the positivity of the solution
and implements various methods for the automatic estimation of the regular-
ization parameter. This leads to a fast and reliable algorithm, which is tested on
numerical experiments both on synthetic data sets and on field data. The
results show that the algorithm produces reasonable solutions in the case of
synthetic data sets, even in the presence of a noise level consistent with real
applications, and yields results that are compatible with those obtained by
electrical resistivity tomography in the case of field data.

Keywords: nonlinear regularization, electromagnetic sounding, parameter
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1. Introduction

Electromagnetic induction (EMI) technique has had widespread use in hydrological and
hydrogeological characterizations [34, 46, 53], hazardous waste characterization studies
[17, 38], precision-agriculture applications [7, 16, 61], archaeological surveys [33, 44, 57],
geotechnical investigations [47] and unexploded ordnance (UXO) detection [29, 30]. The use
of small measurement systems, with rapid response and easy integration into mobile plat-
forms, has been the key factor in the success of EMI techniques for near-surface investiga-
tions in these fields, as they allow dense surveying and real-time conductivity mapping over
large areas in a cost-effective manner.

EMI theory and foundations of measurement systems are described in the applied geo-
physics literature [39, 56, 60]. The basic instrument, usually called a ground conductivity
meter (GCM), contains two small coils, a transmitter and a receiver, whose axes can be
aligned either vertically or horizontally with respect to the ground surface. An alternating
sinusoidal current in the transmitter produces a primary magnetic field HP, which induces
small eddy currents in the subsurface. These currents, in turn, produce a secondary magnetic
field HS, which is measured, together with the primary field, at the receiver. The ratio of the
secondary to the primary magnetic fields, recorded as in-phase and quadrature components, is
then used, along with the instrumental parameters (height above the ground, frequency, inter-
coil spacing, and coil configuration), to estimate electrical properties (conductivity and
magnetic susceptibility) of the subsurface.

Traditional GCMs, like the pioneering Geonics EM38 and EM31, have been designed as
profiling instruments for apparent electrical conductivity (defined as the conductivity of a
homogeneous half-space that produces the same response as measured above the real earth
with the same device) mapping, mainly with subsequent qualitative interpretation. Never-
theless, they can be also used to perform sounding surveys to get quantitative estimates of
depth variations in true electrical conductivity. For this purpose, different approaches have
been considered. Assuming a linear dependence between the GCM response and the sub-
surface electrical conductivity, McNeill [39] presented a method to estimate conductivities for
simple multilayered earth models, which is applicable for low induction numbers

δ
μ ωσ

= = ≪B
r

r
2

1, (1.1)0

under the assumption of uniform electrical conductivity σ. Here r is the inter-coil distance
while δ represents the skin depth (the depth at which the principal field HP has been attenuated
by a factor e−1); μ π= −4 10 H m0

7 is the magnetic permeability of free space; and ω π= f2 ,
where f is the operating frequency of the device in Hz.

Adopting the same linear model of McNeill [39], Borchers et al [3] implemented a
Tikhonov inverse procedure, with a finite difference approximation of the second derivative
as a regularization matrix, to reconstruct conductivity profiles from measurements taken using
a GCM at various heights above the ground. To account for high values of the induction
number, Hendrickx et al [26] fitted the technique of Borchers et al [3] to the nonlinear model
described in Ward and Hohmann [60]. Besides, Deidda et al [12] proposed a least squares
inverse procedure, optimized by mean of a projected conjugate gradient algorithm, to estimate
conductivity profiles under the linear model assumption. All these approaches were reliable
and useful, as they provided quantitative estimates of depth variation in true electrical con-
ductivity, but they were not very appealing for the practitioners, as long as the use of
traditional GCMs prevailed. In fact, collecting the required multiple measurements at several
heights above the ground involves time-consuming, laborious, and costly fieldwork.
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To overcome these fieldwork troubles, in recent years a new generation of GCMs has
been developed to allow for the fast collection of multiple depth responses. Some devices,
such as DUALEM-421S (DUALEM, Inc.) and CMD Mini-Explorer (GF Instruments), are
designed to record data at multiple coil spacing and orientations simultaneously, using a
single frequency; other instruments such as GEM-2 (Geophex, Inc.) work using multiple
frequencies simultaneously (usually from three to ten), although with a fixed transmitter-
receiver geometry. With this technological improvement, the near-surface community is
showing a growing renewed interest towards EMI imaging [5, 31, 38, 40, 41, 48, 54, 55], and
is pressing for new efforts to develop reliable and faster inversion procedures in order to make
real-time imaging a reality.

With the aim of giving a contribution to this joint effort, we propose here a regularized
one-dimensional (1D) inversion procedure designed to swiftly manage multiple GCM depth
responses. It is based on the coupling of the damped Gauss–Newton method with either the
truncated singular value decomposition (TSVD) or the truncated generalized singular value
decomposition (TGSVD), and it implements an explicit (exact) representation of the Jacobian
to solve the nonlinear inverse problem. To illustrate its performance, we first describe the
results obtained inverting synthetic data sets generated over three 1D layered models with
very high conductivities. In particular, we analyze the influence of some experimental set-
tings, such as number and type of measurements (vertical and horizontal coil configurations),
highlighting the different behavior of TSVD and TGSVD implemented with two different
regularization matrices. In addition, we investigate how to choose the optimal regularization
parameter, both when the noise level in the data is known and when it is not. Besides
measuring the execution time for all numerical experiments, in contrast with Schultz and
Ruppel [55], we prove that the analytical computation of the Jacobian, combined with the
Broyden update, makes the inversion algorithm more than ten times faster than approximating
the Jacobian by finite differences. Finally, we present a real case study: using a field data set
measured at a site where an independent electrical resistivity tomography (ERT) was also
collected, we assess the reliability of the inverse procedure by comparing the inverted con-
ductivity profile to the profile obtained by ERT.

A large number of papers concerns the properties of the Gauss–Newton method and its
variants, see, e.g., [8, 18, 27, 32]. In [20] the Levenberg–Marquardt method is applied to an
inverse problem in groundwater hydrology, using an adaptive strategy to choose the
Lagrangian parameter combined with the discrepancy principle for stopping the iteration. In
[18] the positivity constraint on the solution is treated by a procedure different from the one
adopted in our algorithm, which introduces a further non-linearity in the problem to be
solved.

The plan of the paper is as follows: in section 2 we describe the non-linear model which
connects the real conductivity of the soil layers to the apparent conductivity, and in
section 3.1 we compute the Jacobian matrix of the model. The inversion algorithm is
introduced in section 3.2, while section 3.3 describes the adopted regularization procedure,
and section 3.4 illustrates various approaches for the choice of the regularization parameter.
Finally, sections 4 and 5 report the results of numerical experiments performed on synthetic
and real data, respectively. Section 6 contains concluding remarks.

2. The nonlinear forward model

The nonlinear model described in [59, 60], and further analyzed and adapted to the case of a
GCM in [26], is derived from Maxwellʼs equations, keeping in mind the cylindrical symmetry
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of the problem, due to the magnetic field sensed by the receiver coil being independent of the
rotation of the instrument around the vertical axis. The input quantities are the distribution of
the electrical conductivity and magnetic permeablity in the subsurface; the output is the
apparent conductivity at height h. In the following, λ is a variable of integration which has no
particular physical meaning. It can be interpreted as the ratio between a length and the skin
depth δ; see (1.1).

Following [59, Chapter III], we assume that the soil has a layered structure with n layers,
each of thickness dk, =k n1,..., , and consequently that the electromagnetic variables are
piecewise constant; see figure 1. The thickness dn of the bottom layer is assumed to be
infinite. Let σk and μk be the electrical conductivity and the magnetic permeability of the kth

layer, respectively, and let λ λ σ μ ω= +u ( ) ik k k
2 , where = −i 1 is the imaginary unit.

Then, the characteristic admittance of the kth layer is given by

λ λ
μ ω= = …N

u
k n( )

( )
i

, 1, , . (2.1)k
k

k

The surface admittance at the top of the kth layer is denoted by λY ( )k and verifies the
following recursion

λ λ
λ λ λ

λ λ λ=
+

+ = − …+

+

( )
( )

Y N
Y N d u

N Y d u
k n( ) ( )

( ) ( ) tanh ( )

( ) ( ) tanh ( )
, 1, , 1, (2.2)k k

k k k k

k k k k

1

1

which is initialized by setting λ λ=Y N( ) ( )n n at the lowest layer. Numerically, this is
equivalent to starting the recursion at k = n with λ =+Y ( ) 0n 1 .

Now let,

λ λ λ
λ λ= −

+R
N Y

N Y
( )

( ) ( )
( ) ( )

, (2.3)0
0 1

0 1

Figure 1. Schematic representation of the subsoil and of the discretization used in the
paper.
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where λ λ μ ω=N ( ) (i )0 0 , and

∫
∫

δ λ λ λ λ

δ λ λ λ λ

= −

= −

λ

λ

∞ −

∞ −

T h R J r

T h R J r

( ) e ( ) ( ) d ,

( ) e ( ) ( ) d , (2.4)

h

h

0
3

0

2 2
0 0

2
2

0

2
0 1

where λJ ( )0 and λJ ( )1 are Bessel functions of the first kind of order 0 and 1, respectively, and
r is the inter-coil distance. We express the integrals (2.4) in the variable λ, instead of δλ=g
as in [59]. This has some impact on the numerical computation; see remark 2.1.

The apparent conductivity measured by a GCM can be expressed as

μ ω

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )
( )r

H

H
4

Im , (2.5)
S d

P d0
2

where H( )P d and H( )S d are the components along the dipole axis of the primary and secondary
magnetic field, respectively, which can be represented by adapting the expressions given in
[59, page 113] to the geometry of a GCM. Substituting in (2.5), we obtain the predicted
values of the apparent conductivity measurement m h( )V (vertical orientation of coils) and
m h( )H (horizontal orientation of coils) at height h above the ground

μ ω μ ω
= =( ) ( )m h

r
B T h m h

r
B T h( )

4
Im ( ) , ( )

4
Im ( ) ,V H

0
2

3
0

0
2

2
2

where B is the induction number (1.1). Simplifying the formulae, we find

μ ω λ λ

μ ω λ

= −

= −

λ

λ

−

−





⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )

( )

m h
r

e R r

m h e R r

( )
4

Im ( ) ( ),

( )
4

Im ( ) ( ). (2.6)

V h

H h

0
0

2
0

0
1

2
0

Here we denote by

∫ λ λ λ λ=ν ν
∞ ⎡⎣ ⎤⎦f r f J r( ) ( ) ( ) d (2.7)h h

0

the Hankel transform of order ν of the function λf ( )h , where the height h is a fixed parameter.
In our numerical experiments we approximate ν f r[ ]( )h by the quadrature formula described
in [1], using the nodes and weights adopted in [26].

The model depends upon a number of parameters which influence the value of the
apparent conductivity. In particular, it is affected by the instrument orientation (horizontal/
vertical), its height h above the ground, the inter-coil distance r, and the angular frequency ω.
In view of the technical features of the GCM at our disposal, we consider r and ω to be
constant. This constraint could be easily removed.

Remark 2.1. The previous relations (2.6) show that the apparent conductivity predicted by
the model does not depend explicitly on the skin depth δ and the induction number B. This has
some relevance in numerical computation, as an estimate of the value of δ is not required. To
our knowledge, this is the first time that this is noted.
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3. Solution of the inverse problem

In our analysis, we let the magnetic permeability take the same value μ0 in the n layers. This
assumption is approximately met if the ground does not contain ferromagnetic materials.
Then, we can consider the apparent conductivity as a function of the value σk of the con-
ductivity in each layer and of the height h, and we write σm h( , )V and σm h( , )H , where
σ σ σ= …( , , )n

T
1 , instead of m h( )V and m h( ).H

The problem of data inversion is very important in geophysics, when one is interested in
depth localization of inhomogeneities of the soil. To this purpose, multiple measurements are
needed to recover the distribution of conductivity with respect to depth. In order to obtain
such measurements, we use the two admissible loop orientations and assume to record
apparent conductivity at height hi, i = 1,…,m, as depicted in figure 1. This generates m2 data
values. Our algorithm could be easily adapted to the case when other parameters of the model
are varied.

Now, let bVi and bHi be the data recorded by the GCM at height hi in the vertical and
horizontal orientation, respectively, and let us denote by σr ( )i the error in the model prediction
for the ith observation

σ
σ

σ
=

− =
− = +− −

⎪
⎪

⎧
⎨
⎩

( )
( )

r
b m h i m

b m h i m m
( )

, , 1 ,..., ,

, , 1 ,..., 2 .
(3.1)i

i
V V

i

i m
H H

i m

Setting = …b bb ( , , )V V
m
V T

1 , σ σ σ= …m h m hm ( ) ( ( , ), , ( , ))V V V
m

T
1 , and defining bH and

σm ( )H similarly, we can write the residual vector, the measured data, and the model
predictions as

σ σ σ σ
σ

= − = =
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥r b m b b

b
m

m h

m h
( ) ( ), , ( )

( , )

( , )
. (3.2)

V

H

V

H

The problem of data inversion consists of computing the conductivity σk of each layer
(k = 1,…,n) which determines a given data set 5∈b m2 . As it is customary, we use a least
squares approach by solving the nonlinear problem

5
∑σ σ σ σ= ∥ ∥ =

σ∈ =
f f rrmin ( ), ( )

1
2

( )
1
2

( ), (3.3)
i

m

i
2

1

2
2

n

where ∥ ∥· denotes the Euclidean norm and σr ( )i is defined in (3.1).
To estimate the computational complexity needed to evaluate σr( ), we assume that the

complex arithmetic operations are implemented according to the classical definitions, i.e., that
2 floating point operations (flops) are required for each complex sum, 6 for each product and
11 for each division. The count of other functions (exponential, square roots, etc.) is given
separately. If n is the number of layers, m2 the number of data values, and q the nodes in the
quadrature formula used to approximate (2.7), we obtain a complexity +O n m q((45 8 ) )
flops plus nq2 evaluations of functions with a complex argument, and mq with a real
argument.

3.1. Computing the Jacobian matrix

As we will see in the next section, being able to compute or to approximate the Jacobian
matrix σJ ( ) of the vector function (3.2) is crucial for the implementation of an effective
inversion algorithm and to have information about its speed of convergence and conditioning.
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The approach used in [26] is to resort to a finite difference approximation

σ σ δ σ
σ δ

∂
∂ ≃

+ −
= … = …( )r r r

i m j n
( ) ( )

, 1, , 2 , 1, , , (3.4)i

j

i j i

where δ δ δ= = … …e (0, , 0, , 0, , 0)j j
T and δ is a fixed constant.

In this section we give the explicit expression of the Jacobian matrix. We will show that
the complexity of this computation is smaller than required by the finite difference approx-
imation (3.4). The following lemma is one of the main contributions of this work. In its
statement we omit, for clarity, the variable λ.

Lemma 3.1. The derivatives ′ = σ
∂
∂Ykj
Yk

j
, = …k j n, 1, , , of the surface admittances (2.2) can

be obtained starting from

′ = ′ = = … −Y
u

Y j n
1

2
, 0, 1, , 1, (3.5)nn

n
nj

and proceeding recursively for = − −k n n1, 2 ,..., 1 by

μ ω

′ = ′ = − … +

′ = + − +

′ = = − − …

+

+ +
⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

Y N b Y j n n k

Y
a

u

b
N d Y d Y

Y j k k

, , 1, , 1,

2 2
1

i
,

0, 1, 2, , 1, (3.6)

kj k k k j

kk
k

k

k
k k k k k

k

kj

2
1,

2
1 1

where

=
+

+ =
+

+

+ +⎡⎣ ⎤⎦
( )
( ) ( ) ( )

a
Y N d u

N Y d u
b

N Y d u d u

tanh

tanh
,

1

tanh cosh
. (3.7)k

k k k k

k k k k
k

k k k k k k

1

1 1
2 2

Proof. From (2.1) we obtain

σ σ λ σ μ ω δ σ σ μ ω δ∂
∂ = ∂

∂ + = ∂
∂ = ∂

∂ =u

N

N u

u
i

1
2

,
i

1
2

, (3.8)k

j j
k k

k
kj

k

j j

k

k k
kj

2

where δkj is the Kronecker delta, that is, 1 if k = j and 0 otherwise. The recursion initialization
(3.5) follows from Yn = Nn; see section 2. We have

σ
′ = ∂

∂ +
+ +

+

−
+ +

+

σ σ σ

σ σ σ

∂
∂

∂
∂

∂
∂

+

∂
∂

∂
∂ +

∂
∂

+

+

+

( )
( )

( )
( )

( )

( )

Y
N

a N
d u N

N Y d u

N a
d u Y

N Y d u

·
tanh

tanh

·
tanh

tanh
,

kj
k

j
k k

Y N
k k k

d u

k k k k

k k

N Y
k k k

d u

k k k k

tanh

1

1
tanh

1

k

j

k

j

k k

j

k

j

k

j

k k

j

1

1
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with ak defined as in (3.7). If ≠j k , then = =σ σ
∂
∂

∂
∂ 0N uk

j

k

j
and we obtain

′ =
−

+
= ′σ

∂
∂

+
+

+

⎡⎣ ⎤⎦
( )( )

( )
Y N

d u

N Y d u
N b Y

1 tanh

tanh
.kj k

Y
k k

k k k k

k k k j
2

2

1
2

2
1,

k

j

1

The last formula, with bk given by (3.7), avoids the cancellation in − d u1 tanh ( )k k
2 .

If j = k, after some straightforward simplifications, we get

σ

σ

′ = ∂
∂ + +

′ −

+ ∂
∂ − + − −

+
+

+

⎡⎣
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( )

( )

( )

( ) ( )

( ) ( )

Y
N

a
N

N Y d u
Y a d u

N
d u a

d
a

Y

N
d u

tanh
1 tanh

tanh
2

1 1 tanh .

kk
k

k
k

k

k k k k
k k k k k

k

k
k k k

k
k

k

k
k k

1
1,

1 2

This formula, using (3.7) and (3.8), leads to

′ = + ′ + − ++ + +
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥Y

a

u
N b N Y

d
Y

d

N
Y

u2 2
1
2

1
.kk

k

k
k k k k k

k
k

k

k
k

k
1, 1 1

The initialization (3.5) implies that ′ =Y 0kj for any <j k . In particular, ′ =+Y 0k k1, , and since
N uk k is constant, one obtains the expression of ′Ykk given in (3.6). This completes the
proof. □

Remark 3.1. The quantity ak in (3.7) appears in the right-hand side of (2.2), and its
denominator is present also in the expression of bk. It is therefore possible to implement
jointly the recursions (2.2) and (3.6) in order to reduce the number of floating point operations
required by the computation of the Jacobian. We also note that, since in the following
theorem 3.2 we only need the partial derivatives of Y1, we can overwrite the values of ′ +Yk j1,
with ′Ykj at each recursion step, so that only n storage locations are needed for each λ value,
instead of n2.

Theorem 3.2. The partial derivatives of the residual function (3.2) are given by

σ
σ

μ ω λ λ
σ

μ ω
λ

σ

∂
∂ =

∂
∂ = …

∂
∂ = + …

λ

λ

−

− −





⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

r

r R
r i m

R
r i m m

( )

4
e Im

( )
( ), 1, , ,

4
e Im

( )
( ), 1, , 2 ,

i

j

h

j

h

j

0
0

2 0

0
1

2 0

i

i m

for j = 1,…,n. Here ν (ν = 0, 1) denotes the Hankel transform (2.7), r is the inter-coil
distance, λ

σ
∂

∂
R ( )

j

0 is the jth component of the gradient of the function (2.3)

λ
σ

μ ωλ
λ μ ω λ σ

∂
∂ =

−
+

∂
∂( )

R

Y

Y( ) 2i

i ( )
· ,

j j

0 0

0 1
2

1

and the partial derivatives σ
∂
∂

Y

j

1 are given by lemma 3.1.

Proof. The proof follows easily from lemma 3.1 and from equations (2.3), (2.6), and
(3.1). □
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Remark 3.3. The numerical implementation of the previous formulae needs care. It has
already been noted in the proof of lemma 3.1 that equations (3.6)–(3.7) are written in order to
avoid cancellations that may introduce huge errors in the computation. Moreover, to prevent
overflow in the evaluation of the term

λ λ σ μ ω= +( )( )d u dcosh ( ) cosh ik k k k k
2 2 2

in the denominator of bk, we fix a value λmax and for λ λ>d uRe ( ( ))k k max we let
λ= =b b ( ) 0k k . In our numerical experiments we adopt the value λ = 300max .

The complexity of the joint computation of σr( ) and its Jacobian given in theorem 3.2
amounts to +O n mn q((3 8 ) )2 flops, nq3 complex functions, and mnq real functions. To
approximate the Jacobian by finite differences, one has to evaluate +n 1 times σr( ), cor-
responding to +O n mn q((45 8 ) )2 flops, 2n2q complex functions, and mnq real functions.

If the Jacobian is a square matrix, i.e., =n m2 , its computation is seven times faster than
approximating it by finite differences. The situation improves when the dimension of the data
set is smaller than the number of layers (this is the ideal situation, as will be shown in
sections 4 and 5), e.g., the speedup factor is 9 for =n m4 . The complexity issue is of concern
to end users because it is often desirable to process the field data in real time during the
measurement campaign using a notebook computer.

In order to further reduce the computational cost, it is possible to resort to the Broyden
update of the Jacobian [6], which can be interpreted as a generalization of the secant method.
The procedure consists of updating an initial approximation of the Jacobian σ=J J ( )0 0

computed in the initial point σ0. This is realized by the following rank-1 update

= +
−

= …−
−( )

J J
J

k
y s s

s s
, 1, 2, , (3.9)k k

k k k k
T

k
T

k
1

1

where σ σ= − −sk k k 1 and σ σ= − −r ry ( ) ( )k k k 1 . This formula makes the linearization
σ σ σ+ −r J( ) ( )k k k exact in σk−1 and guarantees the least change in the Frobenius norm

∥ − ∥−J Jk k F1 . As this method works well locally [13, Chapter 8], in the sense that the
accuracy of the approximation degrades as the iteration index grows, we apply recursion (3.9)
for = … −k k1, , 1B , and we reinitialize the method with the exact Jacobian after kB
iterations. A single application of (3.9) takes + +mn m n10 2( ) flops, to be added to the cost
of the evaluation of σr( ). We will investigate the performance of this method in section 4.

3.2. Inversion algorithm

The classical approach for solving (3.3) is to find a stationary point of the gradient σ′f ( ) of
σf ( ) by Newtonʼs method. In this case, the iterative step sk is chosen by solving the n × n

linear system

σ σ″ = − ′f s f( ) ( ),k k k

where σ″f ( )k is the Hessian of σf ( ). While σ′f ( ) can be obtained from theorem 3.2, the
analytical expression of σ″f ( ) is not available; it could be computed by further differentiating
the gradient, but we believe that this would imply a large computational cost. To overcome
this difficulty we resort to the Gauss–Newton method, which minimizes at each step the norm
of a linear approximation of the residual σ +r s( ); see (3.2).

Let σr( ) be the Fréchet differentiable and σk denote the current approximation; then we
can write
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σ σ σ≃ ++ Jr r s( ) ( ) ( ) ,k k k k1

where σ σ= ++ sk k k1 and σJ ( ) is the ×m n2 Jacobian of σr( ), defined by

σ σ
σ= ∂

∂ = … = …J
r

i m j n[ ( )]
( )

, 1, , 2 , 1, , .ij
i

j

At each step k, sk is the solution of the linear least squares problem

5
σ∥ + ∥

∈
Jr smin ( ) , (3.10)k k

s n

where σ=J J ( )k k or some approximation; see, e.g., (3.4) and (3.9). From it we obtain the
following iterative method

σ σ σ σ= + = −+ Js r( ), (3.11)k k k k k k1
†

where Jk
† is the Moore–Penrose pseudoinverse of Jk [2]; if ⩾m n2 and Jk has full rank, then

= −J J J J( )k k
T

k k
T† 1 .

When the residuals σr ( )i k are small or mildly nonlinear at σk, the Gauss–Newton method
is expected to behave similarly to Newtonʼs method [2, Chapter 9.2.2]. We remark that, while
the physical problem is obviously consistent, this is not necessarily true in our case, where the
conductivity σ z( ) is approximated by a piecewise constant function. Furthermore, in the
presence of noise in the data the problem will certainly be inconsistent. At the same time,
since we are focused on the nonlinear case, connected to the presence of strong conductors in
the subsoil, we do not take into account the second possibility. We remark that in the case of a
mildly nonlinear problem, a linear model is available [3, 39]. If the previous conditions are
not satisfied, the Gauss–Newton method may not converge.

The damped Gauss–Newton method replaces the approximation (3.11) by

σ σ α= ++ s , (3.12)k k k k1

where αk is a step length to be determined. To choose it, we use the Armijo–Goldstein
principle [43], which selects αk as the largest number in the sequence −2 i, =i 0, 1 ,..., for
which the following inequality holds

σ σ α α∥ ∥ − ∥ + ∥ ⩾ ∥ ∥Jr r s s( ) ( )
1
2

.k k k k k k k
2 2 2

This choice of αk ensures convergence of the method, provided that σk is not a critical point
[2, Chapter 9.2.1].

The damped method allows us to include an important physical constraint in the
inversion algorithm, i.e., the positivity of the solution. In our implementation αk is the largest
step size which both satisfies the Armijo–Goldstein principle and ensures that all the solution
components are positive.

3.3. Regularization methods

With the aim of investigating the conditioning of problem (3.3), we examined the numerical
behaviour of the singular values of the Jacobian matrix σ=J J ( ) of the vector function σr( ).
Let Γ=J U V T be the singular value decomposition (SVD) [2] of the Jacobian, where U and
V are orthogonal matrices of size m2 and n, respectively, Γ γ γ= … …diag( , , , 0, , 0)p1 is the
diagonal matrix of the singular values, and p is the rank of J. We recall that the condition
number of J is given by γ γp1 .

Fixed = =n m2 20, we generate randomly 1000 vectors 5σ ∈ 20, having components
in [0, 100]. For each of them we evaluate the corresponding Jacobian σJ ( ) by the formulae
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given in theorem 3.2 and compute its SVD. The left graph in figure 2 shows the average of the
singular values obtained by the previous procedure and, for each of them, its minimum and
maximum value. It is clear that the deviation from the average is small, so that the condition
number of the Jacobian matrix has the same order of magnitude in all tests. Consequently, the
linearized problem is severely ill-conditioned independently of the value of σ, and we do not
expect its condition number to change much during iteration.

The graph on the right in figure 2 reports the average singular values when
= =n m2 10, 20, 30, 40. The figure shows that the condition number is about 1014 when

n = 10 and increases with the dimension. The singular values appear to be exponentially
decaying, but zero is not a singular value; that is, the problem is not strictly rank deficient.
The decay rate of the computed singular values changes below machine precision (2.2 · 1016),
which is represented in the graph by a horizontal line. The exact singular values are likely to
decay with a stronger rate, while the computed ones are probably significantly perturbated by
error propagation. A problem of this kind is generally referred to as a discrete ill-posed
problem [24].

A typical approach for the solution of ill-posed problems is Tikhonov regularization. It
has been applied by various authors to the inversion of geophysical data; see, e.g., [3, 12, 26].
To apply Tikhonovʼs method to the nonlinear problem (3.3), one has to solve the mini-
mization problem

5
σ σμ∥ ∥ + ∥ ∥

σ∈ { }Mrmin ( ) (3.13)2 2 2
n

for a fixed value of the parameter μ, where M is a regularization matrix, which is often chosen
as the identity matrix, or a discrete approximation of the first or second derivatives. In general,
choosing the regularization parameter requires the computation of the solution σμ of (3.13) for
many values of μ. This can be done, for example, by the Gauss–Newton method, leading to a
large computational effort.

To reduce the complexity we consider an alternative regularization technique based on a
low-rank approximation of the Jacobian matrix. The best rank ℓ approximation ( ⩽ℓ p) to the
Jacobian according to the Euclidean norm, i.e., the matrix Aℓ which minimizes∥ − ∥J A over
all the matrices of rank ℓ, can be easily obtained by the SVD decomposition Γ=J U V T . This
procedure allows us to replace the ill-conditioned Jacobian matrix with a well-conditioned,
rank-deficient matrix Aℓ. The corresponding solution to (3.10) is known as the truncated SVD

Figure 2. SVD of the Jacobian matrix: left, average singular values and errors (n = 20);
right, average singular values for =n 10, 20, 30, 40.
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(TSVD) solution [23] and it can be expressed as

∑ γ= − = −
=

As r
u r

v , (3.14)ℓ
ℓ

i

ℓ
i
T

i
i

( ) †

1

where = …ℓ p1, , is the regularization parameter, γi are the singular values, the singular
vectors ui and vi are the orthogonal columns of U and V, respectively, and σ=r r( )k .

To introduce a regularization matrix 5∈ ×M t n ( ⩽t n), problem (3.10) is usually
replaced by

5∥ ∥ = ∈ = −
∈


 { }M J J Js s s rmin , : , (3.15)n T T

s

under the assumption ∩ = J M( ) ( ) {0} and > −t n mmax (0, 2 ). The generalized
singular value decomposition (GSVD) [45] of the matrix pair (J,M) is the factorization

Σ Σ= =− −J U Z M V Z, ,J M
1 1

where ΣJ , ΣM are diagonal matrices, U, V are orthogonal matrices, and Z is nonsingular. The
truncated GSVD (TGSVD) solution sℓ to (3.15) is then defined as

∑ ∑= − −
= − +

− +
− +

= +
− + − +( )c

s
u r

z u r z , (3.16)ℓ

i p ℓ

p
m p i

T

i
n p i

i p

p

m p i
T

n p i
( )

1

2

1
2

where = …ℓ p0, 1, , is the regularization parameter, =p t if ⩾m n2 , and
= − +p m n t2 if <m n2 . Here, ci ( = …i p1, , ) are the elements of ΣJ different from

0 and 1.
Our approach for constructing a smooth solution to (3.3) consists of regularizing each

step of the damped Gauss–Newton method (3.12) by either TSVD or TGSVD, depending on
the choice of M. For a fixed value of the regularization parameter ℓ, we substitute s in (3.12)
by s ℓ( ) expressed by either (3.14) or (3.16). We let the resulting method

σ σ α= ++ s (3.17)k
ℓ

k
ℓ

k k
ℓ

1
( ) ( ) ( )

iterate until

σ σ στ α∥ − ∥ < ∥ ∥ > <−
−kor 100 or 10 ,k

ℓ
k

ℓ
k

ℓ
k

( )
1

( ) ( ) 5

for a given tolerance τ. The constraint on αk is a failure condition, which indicates that the
method does not converge to a positive solution. This typically happens when the solution
blows up because of ill-conditioning. We denote the solution at convergence by σ ℓ( ). We will
discuss the choice of ℓ in the next subsection.

3.4. Choice of the regularization parameter

In the previous section we saw how to regularize the ill-conditioned problem (3.3) with the
aid of T(G)SVD. The choice of the regularization parameter is crucial in order to obtain a
good approximation σ ℓ( ) of σ.

In real-world applications, experimental data are always affected by noise. To model this
situation, we assume that the data vector in the residual function (3.2), whose norm is
minimized in problem (3.3), can be expressed as = +lb b e, where lb contains the exact data
and e is the noise vector. This vector is generally assumed to have normally distributed entries
with mean zero and common variance. In real data sets the last condition is not necessa-
rily met.
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If an accurate estimate of the norm of the error e is known, the value of ℓ can be
determined with the aid of the discrepancy principle [14, section 4.3]. It consists of deter-
mining the regularization parameter ℓ as the smallest index =ℓ ℓdiscr such that

σ κ∥ − ∥ ⩽ ∥ ∥b m e( ) . (3.18)ℓdiscr

Here κ > 1 is a user-supplied constant independent of∥ ∥e . In our experiments we set κ = 1.5,
since it produced the best numerical results.

We are also interested in the situation when an accurate bound for ∥ ∥e is not available
and, therefore, the discrepancy principle cannot be applied. A large number of methods for
determining a regularization parameter in such a case have been introduced for linear inverse
problems [24]. They are known as heuristic because it is not possible to prove convergence
results for them in the strict sense of the definition of a regularization method; see [14,
Chapter 4].

It is not possible, in general, to apply all the methods developed for the linear case to a
nonlinear problem. The L-curve criterion [22] can be extended quite naturally to the nonlinear
case. Let us consider the curve obtained by joining the points

σ σ∥ ∥ ∥ ∥ ={ }M ℓ prlog ( ) , log , 1 ,..., , (3.19)ℓ ℓ( ) ( )

where σ σ= −r b m( ) ( )ℓ ℓ( ) ( ) is the residual error associated to the approximate solution σ ℓ( )

computed by the iterative method (3.17), using (3.16) as a regularization method. If (3.14) is
used instead, it is sufficient to let M = I and replace p by p.

The curve (3.19) exhibits a typical L-shape in many discrete ill-posed problems. The L-
curve criterion seeks to determine the regularization parameter by detecting the index ℓ of the
point of the curve closer to the corner of the ‘L’. This choice produces a solution for which
both the norm and the residual are fairly small. There are several papers showing examples in
which the L-curve method systematically fails; see, e.g., [19, 58]. Nevertheless, it has been
shown by numerical experiments that it provides a good estimation of the optimal regular-
ization parameter in many inverse problems of applicative interest [21, 50].

Various methods have been proposed to determine the corner of the L-curve. The L-
corner method considers a sequence of pruned L-curves, obtained by removing an increasing
number of points, and constructs a list of candidate vertices produced by two different
selection algorithms. The corner is chosen from this list by a procedure which compares the
norms and the residuals of the corresponding solutions [21]. It is currently implemented
in [25].

We remark that a new approach, based on the comparison of regularized solutions
computed by both TSVD and the Tikhonov method, has been recently proposed in [28]. Its
application to our algorithm is not immediate, but we plan to investigate its performance in
the future.

4. Numerical experiments with synthetic data

To illustrate the performance of the inversion method described in the previous sections, we
present the results of a set of numerical experiments. Initially, we apply our method to
synthetic data sets, generated starting from a chosen conductivity distribution and adding
random noise to data. In the next section we will analyze a real data set.

Figure 3 displays the three functions fr(z), =r 1, 2, 3, used in our experiments to model
the distribution of conductivity, expressed in Siemens/meter, with respect to the depth z,
measured in meters. The first one is differentiable = − −f z( ( ) e ),z

1
( 1.2)2

the second is piecewise
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linear, and the third is a step function. All model functions imply the presence of a strongly
conductive material at a given depth. We assume that the measurements are taken with the
GCM in both vertical and horizontal orientation, placed at height = −h i h( 1) ¯i above the
ground, i = 1,…,m, for a chosen height step h̄; see (3.1). In our experiments ⩾h̄ 0.1 meters.

In this section we simulate the use of a Geonics EM38, operating at frequency 14.6 kHz,
with1 m coil separation. For a chosen model function fr and a fixed number of layers n, we let
the layers’ thickness assume the constant value = = −d d n¯ 2.5 ( 1)k , = … −k n1, , 1, so
that = −z j d( 1) ¯j , j=1,…, n; see figure 1. The choice of d̄ is motivated by the common
assumption that this kind of GCM can give useful information about the conductivity of the
ground up to a depth of 2–3 meters.

We assign to each layer the conductivity σ = f z( )k r k . Then, we apply the nonlinear model
defined in (3.2) to compute the exact data vector σ=lb m( ).

To simulate experimental errors, we determine the perturbed data vector b by adding a
noise vector to lb. Specifically, we let the vector w have normally distributed entries with zero
mean and unitary variance, and compute

τ= + ∥ ∥l l

m
b b

b
w

2
. (4.1)

This implies that τ∥ − ∥ ≈ ∥ ∥l lb b b . In the computed examples we use the noise levels
τ = − −10 , 103 2. Based on our experience, the noise on experimental data may be larger than
10−1, but it can be substantially reduced, e.g., by averaging a small number of repeated
measurements.

For each data set, we solve the least squares problem (3.3) by the damped Gauss–Newton
method (3.12). The damping parameter is determined by the Armijo–Goldstein principle,
modified in order to ensure the positivity of the solution. Each step of the iterative method is
regularized by either the TSVD approach (3.14) or TGSVD (3.16) for a given regularization
matrix M. In our experiments we use both =M D1 and =M D2, the discrete approximations
of the first and second derivatives. These two choices for M pose a constraint on the mag-
nitude of the slope and the curvature of the solution, respectively. To assess the accuracy of
the computation we use the relative error

σ σ
σ= ∥ − ∥

∥ ∥e ,ℓ

ℓ( )

where σ denotes the exact solution of the problem and σ ℓ( ) its regularized solution with
parameter ℓ, obtained by (3.17). The experiments were performed using Matlab 8.1 (R2013a)

Figure 3. Graphs of the conductivity distribution models f1, f2, and f3. The horizontal
axis reports the depth in meters; the vertical axis the electrical conductivity in Siemens/
meter.
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on an Intel Core i7/860 computer with 8Gb RAM, running Linux. The software developed is
available from the authors upon request.

Our first experiment tries to determine the best experimental setting, that is, the optimal
number of measurements and of underground layers to be considered. At the same time, we
investigate the difference between the TSVD (3.14) and the TGSVD (3.16) approaches and
the effect on the solution of the regularization matrix M. For each of the three test con-
ductivity models, we discretize the soil by 20 or 40 layers, up to the depth of 2.5 meters. We
solve the problem after generating synthetic measurements at 5, 10, and 20 equispaced
heights up to 1.9 meters. This process is repeated for each regularization matrix. The (exact)
Jacobian is computed as described in section 3.1. Table 1 reports the values of the relative
error =e eminℓ ℓopt , representing the best possible performance of the method. This value is

the average over 20 realizations of the noise, with noise level τ = − −10 , 10 .3 2

It is clear that the TSVD approach (see the column labelled M = I in the table) is the least
accurate. The TGSVD, with either =M D1 or =M D2, gives the best results for the three test
functions. The results in table 1 state that they are essentially equivalent, and do not clearly
indicate which is the best. We will show in section 5 that the regularization matrix =M D2

appears to produce more accurate reconstructions starting from experimental data.
Regarding the size of the soil discretization, it seems convenient to use a large number of

layers, that is, n = 40. This choice does not increase significantly the computation time. It is
obviously desirable to have at our disposal a large number of measurements; however, the
results obtained with m = 5 and m = 10 are not much worse than those computed with m = 20;
five measurement heights are often sufficient to give a rough approximation of the depth
localization of a conductive layer. This is an important remark, as it reduces the time needed
for data acquisition.

Figure 4 gives an idea of the quality of the computed reconstructions for the model
functions f2 and f3, with n = 40 and noise level τ = −10 3. The exact solution is compared to
the approximations corresponding to =m 5, 10, 20. The previous comments about the
influence of the number of measurements m are confirmed. It is also remarkable that the
position of the maximum is very well localized.

Table 1. Optimal error eopt for =m 5, 10, 20 and n = 20, 40 for the TSVD solution
(M = I) and the TGSVD solution with =M D1 and =M D2. The Jacobian is computed
as in section 3.1.

M = I =M D1 =M D2
example m n = 20 n = 40 n = 20 n = 40 n = 20 n = 40

5 4.1e-01 3.8e-01 1.8e-01 1.7e-01 2.3e-01 2.9e-01
f1 10 3.6e-01 3.7e-01 1.4e-01 1.3e-01 1.8e-01 1.6e-01

20 3.5e-01 3.5e-01 1.5e-01 1.4e-01 1.2e-01 1.3e-01

5 4.8e-01 4.6e-01 1.3e-01 1.4e-01 2.2e-01 2.6e-01
f2 10 4.3e-01 4.0e-01 1.2e-01 9.5e-02 1.3e-01 1.9e-01

20 3.9e-01 3.7e-01 1.1e-01 9.1e-02 1.5e-01 1.4e-01

5 5.7e-01 5.6e-01 3.9e-01 3.9e-01 4.2e-01 4.1e-01
f3 10 5.5e-01 5.4e-01 3.6e-01 3.4e-01 3.4e-01 3.2e-01

20 5.6e-01 5.6e-01 3.5e-01 3.4e-01 2.9e-01 3.3e-01
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In the previous experiments we assumed that all the m2 entries of vector b in (3.2) were
available. In table 2 we compare these results to those obtained by using only half of them,
i.e., those corresponding to either the vertical or horizontal orientation of the instrument. The
rows labelled ‘both’ are extracted from table 1. The results are slightly worse when the
number of data is halved, especially for the less regular model functions, while they are
almost equivalent for the smooth function f1. This observation contributes, like the previous
one, to simplify and speed up field measurements.

In section 3.1 we described the computation of the Jacobian matrix of (3.2) and compared
it to the slower finite difference approximation (3.4) and to the Broyden update of the
Jacobian (3.9). To investigate the execution time corresponding to each method, we let the
method (3.17) perform 100 iterations, with =M D2, for a fixed regularization parameter

Figure 4. Optimal reconstruction for the model functions f2 and f3. The number of
underground layers is n = 40; the noise level is τ = −10 3. The solid line is the solution
obtained by taking as input five measurements for every loop orientation (that is,
m = 5), the dashed line corresponds to m = 10, and the line with bullets to m = 20. The
exact solution is represented by a dash-dotted line.

Table 2. Optimal error eopt for =m 5, 10, 20 and n = 20, 40 for f1 =M D( )2 , f2
=M D( )1 , and f3 =M D( )2 . The results obtained from measurements collected with the

instrument in both vertical and horizontal orientation are compared to those obtained
with a single orientation.

f1, =M D2 f2, =M D1 f3, =M D2
orientation m n = 20 n = 40 n = 20 n = 40 n = 20 n = 40

5 2.3e-01 2.9e-01 1.3e-01 1.4e-01 4.2e-01 4.1e-01
both 10 1.8e-01 1.6e-01 1.2e-01 9.5e-02 3.4e-01 3.2e-01

20 1.2e-01 1.3e-01 1.1e-01 9.1e-02 2.9e-01 3.3e-01

5 3.3e-01 2.9e-01 3.5e-01 3.1e-01 6.2e-01 6.6e-01
vertical 10 2.4e-01 1.7e-01 2.9e-01 2.6e-01 5.3e-01 5.0e-01

20 1.3e-01 2.2e-01 2.4e-01 1.7e-01 4.0e-01 4.3e-01

5 2.9e-01 2.7e-01 3.6e-01 3.5e-01 6.6e-01 8.5e-01
horizontal 10 2.4e-01 2.6e-01 1.9e-01 1.6e-01 6.3e-01 6.0e-01

20 2.0e-01 2.1e-01 1.7e-01 1.8e-01 4.4e-01 4.7e-01
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( =ℓ 4). When the Jacobian is exactly computed, the execution time is 7.18 s, while the finite
difference approximation requires18.96 s. The speedup factor is 2.6, which is far less than the
one theoretically expected. This is probably due to the implementation details and to the
features of Matlab programming language. We performed the same experiment by applying
the Broyden update (3.9) and recomputing the Jacobian every kB iterations. For kB = 5 the
execution time is 2.00 s, while for kB = 10 it is 1.32 s. Despite this strong speedup (a factor of
14 with respect to finite difference approximation), the accuracy is not substantially affected
by this approach. Table 3 reports the relative error eopt obtained by repeating the experiment
of table 1 using the Broyden method with kB = 10. We only report the values of eopt for some
of the examples. The loss of accuracy, if any, is minimal.

The maximum resolution that the inversion algorithm can achieve in imaging high-
conductivity thin layers is another important issue we inspected in this work. This situation is
typical, e.g., in UXO detection. To this end, we consider the test function f3 and let the length
ξ of the step vary; that is, we set =ξf z( ) 13, for ξ∈ +z [0.5, 0.5 ] and =ξf z( ) 0.23,
otherwise. Each problem is solved for three regularization matrices and two noise levels, and
each test is repeated 20 times for different noise realizations. The left graph of figure 5 reports
the average errors for different values of ξ, while the right graph displays the corresponding
standard deviations. The choice =M D1 appears to be the best for detecting a thin conductive
layer. Indeed, not only the errors are better, but the smaller standard deviations ensure that the
method is more reliable. Figure 6 shows the reconstructions of ξf3, with three different step

lengths, ξ = 1.0, 0.5, 0.2, =M D1, and τ = −10 2. It is remarkable that the position of the
maximum is well located by the algorithm even in the presence of a very thin step.

Remark 4.1. It has been shown in recent literature [4, 15] that if a linear inverse problem is
solved in Lp spaces, with <p 2, the reconstruction of discontinuous functions can greatly
improve. This would be particularly helpful in the presence of a highly conductive thin layer,
but applying such methods is rather involved even in the linear case.

Figure 5. Results for the reconstruction of test function ξf3, with a variable step length

ξ, which is reported on the horizontal axis. The left graph reports the average error eopt,
obtained with three regularization matrices =M I D D, ,1 2. Each test is repeated 20
times for each noise level τ = − −10 , 103 2. The right graph reports the corresponding
standard deviations.
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In the previous experiments, the regularization parameter ℓ has been chosen optimally,
that is, in order to produce the smallest deviation from the exact solution. Obviously, in real-
world applications this is not possible, so it is essential to determine the parameter effectively.
When an accurate estimate of the noise level is known, this can be done by the discrepancy
principle (3.18). In our experiments, we set κ = 1.5 and substitute ∥ ∥e by τ ∥ ∥b , where τ is
the noise level and b is the noisy data vector; see (4.1).

When the noise level is unknown, the regularization parameter may be estimated by a
heuristic method. We compared the L-corner method, described in section 3.4, to the
restricted Regińska method (ResReg) [49, 50], the residual L-curve [50, 51], and the hybrid
quasi-optimality criterion [42, 50]. These methods were designed for linear inverse problems,
but they can also be applied to nonlinear problems, as they only require the knowledge of the
residual corresponding to each regularized solution. The L-corner method proved to be the
most robust, so in the rest of the section we will only refer to it.

Our numerical experiments showed that the discrepancy and the L-corner methods fur-
nish very good estimates for the parameter when M = I, while they are less reliable when

=M D1 or D2, that is, for the choice of the regularization matrix which produced the best
results in our experiments. This fact is known for the L-curve; see, e.g., [52]. In fact, a good
choice for M is a matrix whose kernel (approximately) contains the solution, and this makes
the L-curve lose its typical ‘L’ shape. We remark that we cannot apply the discrepancy

Table 3. Optimal error eopt for =m 5, 10, 20 and n = 20, 40 for f1 =M D( )2 , f2
=M D( )1 , and f3 =M D( )2 . The Jacobian is computed every 10 iterations and then

updated by the Broyden method.

f1, =M D2 f2, =M D1 f3, =M D2

m n = 20 n = 40 n = 20 n = 40 n = 20 n = 40

5 1.8e-01 2.3e-01 1.3e-01 1.2e-01 4.6e-01 5.0e-01
10 1.7e-01 1.5e-01 1.1e-01 1.0e-01 3.3e-01 3.9e-01
20 1.1e-01 1.3e-01 1.1e-01 9.0e-02 3.1e-01 3.3e-01

Figure 6. Optimal reconstructions for the test function ξf3, , with step lengths ξ = 1.0

(left), 0.5 (center), and 0.2 (right), obtained with =M D1 and noise level τ = −10 2.
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principle to real data sets for which an estimate of the noise is not available. Moreover,
according to our experience, the noise on real EMI data is not necessarily equally distributed.
This will be commented on in section 5.

Figure 7 shows a reconstruction of test function f1 obtained with m = 10, n = 40, noise
level τ = −10 2, and regularization matrix =M D2. The graph on the left displays the L-curve
corresponding to this example; the graph on the right compares the approximations produced
by the discrepancy criterion and the L-corner method to the exact solution. In this case the
optimal parameter is =ℓ 2. The discrepancy fails, as it gives the estimate =ℓ 1, while the L-
corner returns =ℓ 2. This test function is approximately contained in the kernel of D2, as

σ∥ ∥ ≃ −D 3 · 102
2 while σ∥ ∥ ≃ 4, and the L-curve appears almost shapeless. In any case, the

L-corner method implements a particular strategy to deal with such cases and produce a good
reconstruction.

Figure 7. Results for test function f1, with m = 10, n = 40, τ = −10 2, and =M D2. The
graph on the left displays the L-curve; the one on the right the exact solution and the
reconstructions produced by the discrepancy principle and the L-corner method.

Figure 8. Results for test function f2, with m = 10, n = 40, τ = −10 3, and =M D1. The
graph on the left displays the L-curve; the one on the right the exact solution and the
reconstructions produced by the discrepancy principle and the L-corner method.
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Figure 8 reports the same graphs for test function f2, with m = 10, n = 40, τ = −10 3, and
=M D1. The optimal parameter is =ℓ 4. The L-corner method gives =ℓ 4 and discrepancy

returns =ℓ 2. In this case both methods succeed in identifying accurately the depth at which
the conductivity is maximal.

5. Numerical experiments with field data

We tested the nonlinear inversion technique described in the previous sections on field data
collected at the Cagliari Airport (Sardinia, Italy) in an area where previous geophysical
investigations, conducted for UXO detection, established the presence of layered materials
with very high electrical conductivity, suitable to be investigated with vertical EMI sound-
ings. The reliability of the inverted conductivity profile was assessed by comparison with
conductivities obtained by ERT [11, 37].

The ERT profile was performed using 48 electrodes set up with an inter-electrode spa-
cing of 0.5 m deployed in a Wenner–Schlumberger array, which we chose to reach a com-
promise between a reasonable vertical resolution and a good signal-to-noise ratio [10]. ERT
data were collected using an IRIS Syscal Pro Switch 48 resistivity meter, which was set for
six-cycle stacking (repetition of measurements), with the requirement of reaching a quality
factor (standard deviation) of less than 5%. Data were then inverted using the commercial
program Res2Dinv [35, 36]. The software employs a smoothness-constrained least-squares
optimization method [9, 36] to minimize the difference between measured and modelled data,
which it calculates using either a finite difference or a finite element approximation. The
program divides the subsurface into rectangular cells whose corners, along the line, follow the
positions of the electrodes in the subsurface [36]. The quality of the fit between measured and
modelled data is expressed in terms of the root mean square (RMS) error. Figure 9 shows the
ERT result we obtained with an RMS error of 2%, displayed in conductivity units to facilitate
direct comparison with the electromagnetic data.

As expected, the section shows a subsurface model where conductivity changes almost
exclusively in the vertical direction. At the near surface, electrical conductivity starts with low
values (< −200 mS m 1) and keeps them down to 1 m depth; then, it abruptly increases,
reaching maximum values (up to −1800 mS m 1) at the depth of about 1.7 m; finally, it lowers
below −800 mS m 1 in the deepest portion of the investigated section. The graph on the right
of figure 9 shows the conductivity profile at the location where we carried out the

Figure 9. ERT results: in the left graph we display the conductivity section; the right
graph reports the conductivity profile versus the depth at the position where the
electromagnetic data were collected, marked by a dashed line in the first graph.
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electromagnetic sounding. As the exact solution is not available in this real case study, this
profile was used as a benchmark to comparatively assess the reliability of our regularized
nonlinear inversion procedure.

Electromagnetic data were measured with the CMD-1 conductivity meter (GF Instru-
ments), a frequency-domain electromagnetic device with a constant operating frequency of
10 kHz and 0.98 m coil separation. After completing the usual calibration procedure, the
electromagnetic vertical sounding was obtained by making measurements in vertical and
horizontal coil-mode configurations, lifting the instrument above the ground at heights from 0
to 1.9 m, with a 0.1 m step, by means of a specially built wooden frame; see picture on the
right in figure 10. For both coil orientations and each instrument height, we recorded 20
readings to get the mean value and the standard deviation of each measurement. Figure 10
(left) displays the resulting electromagnetic data versus height curves.

The standard deviations on the data (figure 10, left) are rather different from one another.
This suggests that the noise is not equally distributed and rules out the use of the discrepancy
principle to estimate the regularization parameter, as well as other statistical methods (see,
e.g., the generalized cross-validation [24]) for which this assumption is essential. For this
reason, in our experiments we only use heuristic parameter selection techniques.

We apply the damped Gauss–Newton method (3.12) to the least squares problem (3.3),
where the vector b (see (3.2)) contains the field data reported in the left graph of figure 10. We
use 20 measurements in vertical and horizontal orientation (m = 20), discretizing the soil by
40 layers (n = 40) up to the depth of 2.5 m. The Jacobian is exactly computed, as described in
section 3.1, and the damping parameter is determined by the Armijo–Goldstein principle.

We initially set M = I and regularize the solution by TSVD; figure 11 shows the solutions
σℓ, = …ℓ 2, , 7. In each graph, the dashed line represents the conductivity profile produced by
ERT. To assess the performance of the L-corner method, we compare it to the ResReg,
residual L-curve, and hybrid quasi-optimality criterions, mentioned in section 4. The values of
the regularization parameters are reported in the first row of table 4, together with the
coordinates (depth and value) of the maximum of the corresponding regularized solution.
These are to be compared with the values (1.68,1.74) which locate the maximum of the
conductivity profile predicted by ERT; see figure 9, right. The results of table 4 and figure 11

Figure 10. Left: mean apparent conductivities measured in vertical (circles) and
horizontal (triangles) modes at different heights above the ground; error bars are
standard deviations, which are multiplied by 10 for display purposes. Right: the
wooden frame used to put the instrument at different heights above the ground. In the
picture, the GCM is placed at height 0.5 m.
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show that the position of the maximum is well localized, starting from =ℓ 5, but that the
shape of the solution is never accurately determined.

We now report the results obtained by TGSVD with =M D1 and =M D2 (the discrete
approximations of the first and second derivatives). The first six regularized solutions are
displayed in figure 12 and figure 13, respectively, together with the ERT solution. The
identified regularization parameters and the coordinates of the maximal conductivity pre-
dicted by ERT appear in the second and third rows of table 4.

Figure 11. Regularized solutions σℓ , with regularization parameter = …ℓ 2, , 7,
obtained by applying TSVD (M = I) to each iteration of the Gauss–Newton method.
We used all the available measurements (m = 20) and set n = 40. The dashed line
represents the conductivity predicted by ERT.

Table 4. Performance of the methods for the estimation of the regularization parameters
mentioned in section 4, when the inversion algorithm is applied to field data with
m = 20, n = 40, and =M I D D, ,1 2. Each entry of the table reports the value of ℓ
identified by a particular method and, in parentheses, the depth at which the maximum
of σℓ is located and the value of the maximum (in Sm−1). The values predicted by ERT
are (1.68,1.74).

L-corner ResReg L-res Q-hyb

M = I 5 (1.47,1.11) 4 (1.67,1.04) 2 (2.44,0.98) 7 (1.73,1.26)
=M D1 2 (1.99,1.48) 1 (2.50,0.98) 2 (1.99,1.48) 2 (1.99,1.48)
=M D2 2 (1.60,1.53) 1 (1.60,1.53) 2 (1.60,1.53) 1 (1.60,1.53)
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It is clear that resorting to the TGSVD, using either the first or the second derivative as a
regularizing operator, is much more effective than the TSVD approach. In this particular case,
the second derivative produces the best results. Among the parameter estimation methods, the
L-corner algorithm [21] appears to be the most robust, as it identifies an acceptable solution in
all three cases. Moreover, the position of the maximum is localized with sufficient accuracy.

Figure 14 reports the first three regularized solutions with =M D2, corresponding to
m = 10 and m = 5, that is, using half of the measurements used in the previous figures
( = …h 0 m, 0.2 m, , 1.8 m), and a quarter of them ( = …h 0 m, 0.4 m, , 1.6 m). Reducing the
number of data values leads to less accurate solutions, but the position of the conductivity
maximum and its value are very well determined. In both cases, the L-corner method returned

=ℓ 2.

6. Conclusions

In this paper we propose a regularized inversion method to reconstruct the electrical con-
ductivity of the soil with respect to depth, starting from electromagnetic data collected by a
GCM. We develop exact formulae for the Jacobian of the function to be inverted, and choose
a relaxation parameter in order to ensure both the convergence of the iterative method and the
positivity of the solution. This leads to a fast and reliable algorithm. Various methods for the

Figure 12. Regularized solutions σℓ , with regularization parameter = …ℓ 1, , 6,
obtained by applying TGSVD ( =M D1) to each iteration of the Gauss–Newton
method. We used all the available measurements (m = 20) and set n = 40. The dashed
line represents the conductivity predicted by ERT.

Inverse Problems 30 (2014) 125014 G P Deidda et al

23



automatic estimation of the regularization parameter are considered. Numerical experiments
on synthetic data sets show that the algorithm produces reasonable results, even when the
noise level is chosen to be consistent with real applications. The method is finally applied to
real field data, producing results that are compatible with those obtained by ERT. In the near
future, we plan to adapt our inversion algorithm and our software in order to deal with
multiple depth responses, corresponding to multifrequency and/or multioffset GCM mea-
surements, produced by the new generation of instruments currently available.
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