ESERCIZI - FASCICOLO 3

Esercizio 1. Si voglia illuminare una stanza con un certo numero di lampadine. Assumiamo che la probabilità che una lampadina sopravviva almeno n giorni vale p^n , con p = 0.9. Si può ritenere che le lampadine si comportino in modo indipendente. Quante lampadine occorre installare affinché, con probabilità almeno 0.99, dopo 10 giorni vi sia almeno una lampadina funzionante?

Esercizio 2. Siano A,B,C tre eventi in uno spazio di probabilità discreto (Ω,P) . Si assuma che A,B,C siano indipendenti. Si mostri che

- (i) $A \cap B$ è indipendente da C.
- (ii) $A \cup B$ è indipendente da C.

Esercizio 3. Io possiedo due ombrelli, che lascio a casa o in ufficio. Quando esco la mattina e piove prendo un ombrello (ammesso che a casa ce ne sia almeno uno), se non piove non lo prendo. Lo stesso faccio quando esco la sera dall'ufficio. Ogni volta che esco di casa o dall'ufficio la probabilità che piova è *p*, indipendentemente dalle altre volte. Stasera sono già tornato dal lavoro, e in casa c'è un ombrello.

- (a) Qual è la probabilità che domani sera, dopo il mio ritorno dal lavoro, in casa ci siano due ombrelli?
- (b)* Qual è la probabilità che dopodomani sera ci sia in casa esattamente un ombrello?
- (c)* Se dopodomani sera, dopo il mio ritorno dal lavoro, ci sarà a casa esattamente un ombrello, qual è la probabilità che domani piova (mattina, sera o entrambe)?

Esercizio 4. È stato indetto un referendum in una popolazione di $n \ge 1$ individui (tutti aventi diritto al voto). Ciascun individuo andrà a votare con probabilità $\frac{1}{2}$, indipendentemente dagli altri. Inoltre, se un individuo andrà a votare, voterà SÌ con probabilità $\frac{1}{2}$, indipendentemente dagli altri.

- (1) Qual è la probabilità p che un individuo scelto a caso vada a votare e voti SÌ?
- (2) Qual è la probabilità che il numero di voti SÌ sia k, per $k \in \{0, ..., n\}$?
- (3) Assumendo che i voti SÌ siano k, si determini la probabilità (condizionale) che i votanti totali siano m, dove $m \in \{k, ..., n\}$. Si mostri che tale probabilità vale

$$\binom{n-k}{m-k} \left(\frac{1}{3}\right)^{m-k} \left(\frac{2}{3}\right)^{n-m}.$$

Esercizio 5. Da un'urna contenente n palline di cui k rosse e n-k verdi, con $1 \le k \le n-1$, si estrae una pallina e quindi, senza reimmetterla nell'urna, si estrae una seconda pallina. Si considerino gli eventi informalmente descritti da

 $A_1 :=$ "la prima pallina estratta è rossa",

 $A_2 :=$ "la seconda pallina estratta è rossa".

Si mostri che gli eventi A_1 e A_2 non sono indipendenti.

Esercizio 6. Siano A e B due eventi con probabilità non nulla. Diciamo che A è positivamente correlato a B se

$$P(A|B) \ge P(A)$$
.

Si mostri che le seguenti tre affermazioni sono equivalenti.

- (i) A è positivamente correlato a B.
- (ii) B è positivamente correlato a A.
- (iii) A^c è positivamente correlato a B^c .

Esercizio 7. Ad un quiz partecipa una squadra composta da due persone. Viene posta una domanda e proposte 4 risposte possibili, di cui una sola è esatta. I due componenti della squadra possono consultarsi: quindi rispondono correttamente se almeno uno dei due conosce la risposta, in caso contrario rispondono a caso. Supponiamo che ognuno dei concorrenti abbia probabilità p di conoscere la risposta, indipendentemente l'uno dall'altro.

- (a) Qual è la probabilità che almeno uno dei due conosca la risposta?
- (b) Qual è la probabilità che la squadra dia la risposta corretta?
- (c) Se sappiamo che la squadra ha dato la risposta corretta, qual è la probabilità che almeno uno dei due la conoscesse?

Esercizio 8. Un ristorante ha nel menù tre piatti di carne e uno di pesce. I quattro piatti vengono scelti con la medesima frequenza, in altre parole ogni piatto è scelto dal 25% dei clienti. Il 70% dei clienti che ordinano un piatto di carne ordinano anche un vino rosso, il restante 30% un vino bianco. Similmente, il 90% dei clienti che ordinano un piatto di pesce ordinano anche un vino bianco, il restante 10% un vino rosso.

(a) Di un cliente sappiamo che ha ordinato un vino bianco. Qual à la probabilità che abbia ordinato un piatto di carne?

In un tavolo si siedono 4 clienti. Ognuno ordina indipendentemente dagli altri.

- (b) Qual è la probabilità che tutti e quattro ordinino vino bianco?
- (c) Se sappiamo che due clienti hanno ordinato carne, e due pesce, qual è la probabilità che tutti e quattro ordinino vino bianco?