VARIABILI ALEATORIE O CASUALI
Une veriabile oleatorio è une quantite numenica if ai valore difende dall'enito di un esperimento aleatorio.

Esempi

1) Un'mane contime 10 palline numesate de 1 a 10. Ne estraiamo, Juccessivaminte e con Uimmistida, due. Sia X il piü grende dei due numei estratti.
2) Come al punto 1, ma le due estrarioni arsenfons tenze uimmissione.
3) In uns scheme di prove vipetute e indipendenti con pads. di succeno p, sie X il n° di prove fino all'ottemiments del primo Succoso
4) In uno scheme di n pore lipetute e indipendenti, sie X il mumess di succem ottenuti.
5) Al casino' gischism la "otrategia del raddoppis": con un capitale iniziale $C=1023 \in$ iniziams a puntare $1 \in$ mil zosso. Se perdiamo, continuiams a puntare sul ross iaddoppiansb la puntate. Ci fermigms o appene esce il rosno, o quando non abbiens più soldi

$$
X=\text { capitale finale }-C
$$

Sia Ω uno spazio compionaris con la prababilitio P
Definiabne S_{i} dice veriabile sleatoria una qualunque funzisso

$$
X: \Omega \rightarrow \mathbb{R}
$$

Se $A \leq \mathbb{R}$, l'insieme $\{w \in \Omega: X(w) \in A\}$ è un evento.
Per burite denotiams questo events con $\{X \in A\}$ e $l a$ sue probabilite con $P(X \in A)$
Se $A=\{x\}$ suivecoms $\{X=x\}$ e $P(X=x)$ invece di

$$
\{X \in\{x\}\}=P(X \in\{x\})
$$

Se $A=(-\infty, x]$ shiverems $\{X \leqslant x\}$ e $P(X \leqslant x)$

Dete una vie. X, l^{\prime} insieme $\{X(w): w \in \Omega\} \leq \mathbb{R}$ si dice immafine selle v.a. X.

Definizione Une v.a. X si dice discute se le sue immagize \bar{e} un sottointiome finits o mumerebile di \mathbb{R}.

Sie X une v.e discute. Per ogri $x \in \mathbb{R}$ pon'sms
$p(x)=P(X=x) \quad$ Notare che: $\quad P: \mathbb{R} \rightarrow[0,1]$
e se x non appartione all'immagine di X, allore $p(x)=0$
Le funzione p si dice densite $($ disueta) di X

Erempis 1 estrazion con uimm., wne con palline mumuete do 1 e 10. $X=n^{0}$ pius elts estretto.

Immafine di $X:\{1,2, \ldots, 10\}$. Sie $K \in\{1, . ., 10\}$, celoliems

$$
p(k)=P(X=k)
$$

$\Omega=\{1, \ldots, \operatorname{lo}\} \times\{1, \ldots, 10\} \quad P$ prob. a siti equiprobabili

$$
\begin{aligned}
& P(X=k)=\frac{|\{X=k\}|}{|\Omega|}=\frac{|\{X=k\}|}{100} \\
& \begin{aligned}
|\{X=k\}| & =\mid\left\{k a l_{e} 1^{a},<k \text { alle 2a\}}\left|+| | k \text { elle } 2^{2},<k \text { alle 12 }\right\}|+|\{(k, k)\}|\right. \\
& =k-1+k-1+1=2 k-1 \Rightarrow p(k)=\frac{2 k-1}{100}
\end{aligned}
\end{aligned}
$$

Esempio 2 Come sopre ma senze Uimmistione Immafine di $X:\{2,3, \ldots, 10\}$. Sia $k \in\{2, \ldots, 10\}$

$$
P(k)=P(X=k)
$$

Sie Ω l'insime delle disposiansi sunze ripetizione di due offetti: sueti de $\{1, \ldots, 10\}$. $|\Omega|=\mid 0 \cdot 9=90$

$$
\begin{aligned}
\mid\{X=k j \mid & =\mid\left\{k \text { alla } 1^{2},<k \text { alla } 2^{a}\right\}|+|\left\{k \text { alle } 2^{2},<k \text { ells } 1^{2}\right\} \mid=2 k-2 \\
P(k) & =\frac{2 k-2}{90}
\end{aligned}
$$

Exempis $3 n^{0}$ di pore fino of 1^{0} succenso.
Immagine di $X:\{1,2, \ldots\}$. Sia $k \geqslant 1$

$$
P(X=k)=(1-\rho)^{k-1} p
$$

Exempio $4 X=n^{0}$ di sucusi in n pore
Immafine di $X:\{0,1, \ldots, n\}$. Se $k \in\{0,1, \ldots, n\}$

$$
P(k)=P(X=K)=\binom{m}{k} p^{k}(1-\rho)^{m-k}
$$

Exumio 5 Strategia al raddopaio.
1 mmagine di X ?

m^{0} üpertizione	Emo pluntati	Emovinti	X
1	1	1	1
2	2	2	$2-1=1$
3	4	4	$4-2-1=1$
\vdots	\vdots	\vdots	
n	2^{n-1}	2^{n-1}	$2^{m-1}-\sum_{k=1}^{m-1} 2^{n-1}=1$

$$
\sum_{k=1}^{n-1} 2^{k-1}=\sum_{i=0}^{m-2} 2^{i}=\frac{2^{m-1}-1}{2-1}=2^{m-1}-1 \quad \sum_{i=0}^{k} a^{i}=\frac{Q^{k+1}-1}{2-1}
$$

Se puds 10 volte, pudo $2^{10}-1=1023$ e quindi ho finuito i soldi. In quesito coss $X=-1023$

$$
\begin{aligned}
& \text { Immagine di } X:\{-1023,1\} \\
& P(-1023)=P(X=-1023)=\left(\frac{19}{37}\right)^{10} \\
& p(1)=1-p(-1023)=1-\left(\frac{11}{37}\right)^{10}
\end{aligned}
$$

