$$
\begin{aligned}
& X, Y \sim N(0,1) \text { indipendenti } \quad \begin{array}{l}
Z=X+\sigma Y \\
W=X-\frac{1}{\sigma} y \quad \sigma>0
\end{array} \\
& \binom{z}{w}=A\binom{x}{y} \quad A=\left(\begin{array}{cc}
1 & \sigma \\
1 & -\frac{1}{\sigma}
\end{array}\right) \quad \operatorname{det} A=-\frac{1}{\sigma}-\sigma=-\frac{1+\sigma^{2}}{\sigma} \\
& \left.A^{-1}\binom{z}{w}=\binom{\frac{1}{1+r^{2}} z+\frac{\sigma^{2}}{1+r^{2}} w}{\frac{\sigma}{1+\sigma^{2}} z-\frac{\sigma}{1+\sigma^{2}} w} \quad\{2, w, w)=\frac{1}{|\operatorname{det} A|}\left(f_{x i y}\left|A^{-1}\right|_{w}^{z}\right)\right) \\
& f_{2, w}(2, w)=\frac{\sigma}{1+\sigma^{2}} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{1}{1+\sigma^{2}} 2+\frac{\sigma^{2}}{1+\sigma^{2}} w\right)^{2}\right] \exp \left[-\frac{1}{2}\left(\frac{\sigma}{1+\sigma^{2}} 2-\frac{\sigma}{1+\sigma^{2}} w\right)^{2}\right] \\
& =\frac{\sigma}{1+\sigma^{2}}\left(\frac{1}{\sqrt{2 \pi}}\right)^{2} \exp \left[-\frac{1}{2}\left(\frac{1}{\left(1+\sigma^{2}\right)^{2}}+\frac{\sigma^{2}}{\left(1+r^{2}\right)^{2}}\right) z^{2}\right] \exp \left[-\frac{1}{2}\left(\frac{\sigma^{4}}{\left(1+\sigma^{2}\right)^{2}}+\frac{\sigma^{2}}{\left(1+\sigma^{2}\right)^{2}}\right) \omega^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sigma}{1+\sigma^{2}}\left(\frac{1}{\sqrt{2 \pi}}\right)^{2} \exp \left[-\frac{1}{2}\left(\frac{1}{\left(1+\sigma^{2}\right)^{2}}+\frac{\sigma^{2}}{\left(1+\sigma^{2}\right)^{2}}\right) z^{2}\right] \exp [-\frac{1}{2}(\underbrace{\sigma^{2}}_{\left.\frac{\sigma^{2}}{\left(1+\sigma^{2}\right)^{2}}+\frac{\sigma^{2}}{\left(1+\sigma^{2}\right)^{2}}\right)}] \\
& =\frac{\sigma}{1+\sigma^{2}}\left(\frac{1}{\sqrt{2 \pi}}\right)^{2} \exp \left[-\frac{2^{2}}{2\left(1+\sigma^{2}\right)}\right] \exp \left[-\frac{w^{2}}{2\left(1+\frac{1}{\sigma^{2}}\right)}\right] \\
& =\underbrace{\frac{1}{\sqrt{2 \pi\left(1+\sigma^{2}\right)}} \exp \left[-\frac{z^{2}}{2\left(1+\sigma^{2}\right)}\right]} \frac{1}{\sqrt{2 \pi\left(1+\frac{1}{\sigma^{2}}\right)}} \exp \left[-\frac{w^{2}}{2\left(1+\frac{1}{\sigma^{2}}\right)}\right]
\end{aligned}
$$

densite di $N\left(0,1+\sigma^{2}\right)$ dennte di $N\left(0,1+\frac{1}{\sigma^{2}}\right)$

Quindi: ZeW sono indipendenti

$$
Z \sim N\left(0,1+\sigma^{2}\right) \quad W \sim N\left(0,1+\frac{1}{\sigma^{2}}\right)
$$

Mostriems ora che, in generale, bamma di due normali indipendenti $e^{-}$Nrmele.

$$
\begin{aligned}
& X \sim N\left(\mu_{x}, \sigma_{x}^{2}\right) \quad Y \sim N\left(\mu_{y}, \sigma_{y}^{2}\right) \quad \text { indipundenti } \\
& \bar{X}=\frac{X-\mu_{x}}{\sigma_{x}} \quad \bar{Y}=\frac{Y-\mu_{y}}{\sigma_{y}} \quad \bar{X}, \bar{y} \sim N(0,1) \quad \text { indipendenti } \\
& X+Y=\sigma_{x} \bar{X}+\mu_{x}+\sigma_{y} \bar{y}+\mu_{y}=\left(\mu_{x}+\mu_{y}\right)+\sigma_{x}[\underbrace{\bar{X}+\frac{\sigma_{y}}{\sigma_{x}} \bar{y}}_{\text {ve. Normele }}] \\
& \Rightarrow X+Y e^{-} \text {monmale }
\end{aligned}
$$

$$
\Rightarrow X+y \sim N\left(\mu_{x}+\mu_{y}, \sigma_{x}^{2}+\sigma_{y}^{2}\right)
$$

Monimo e minimo di $V, Q$. indifundenti
Siamo $X_{1}, X_{2, \ldots,} X_{n}$ v.e. indipendenti. Siens $F_{1, \ldots,} F_{3}$ le bro funcioni di upartizione

$$
W=\min \left(X_{1}, X_{2}, \ldots, X_{n}\right) \quad Z=\operatorname{mox}\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

Determiniems le diotribuzioni di $z$ e W. Piú pucizomente, trovioms $b$ formismi di ripartizions di $Z=W$.

$$
\begin{aligned}
& F_{Z}(z)=P(Z \leq z)=P\left(\max \left(X_{1}, X_{2}, \cdots, X_{n}\right) \leq z\right)= \\
& \left.=P\left(X_{1} \leq z, X_{2} \leq z, \ldots, X_{m} \leq z\right) \quad \text { (indipandenzs delle } X_{i}\right) \\
& =P\left(X_{1} \leq z\right) P\left(X_{2} \leq z\right) \cdots P\left(X_{m} \leq z\right)=F_{1}(z) F_{2}(z) \cdots F_{m}(z)
\end{aligned}
$$

Esempios $X_{11}, \ldots, X_{m} \sim U(0,1)$ indipendendi

$$
F_{i}(x)=\left\{\begin{array}{ll}
1 & x \geq 1 \\
x & 0 \leq x \leq 1 \\
0 & x<0
\end{array} \Rightarrow F_{2}(z)= \begin{cases}1 & 2 \geq 1 \\
z^{m} & 1 \geq 0 \\
0 & z<0\end{cases}\right.
$$

$$
\begin{aligned}
& \left.\Rightarrow f_{z}(z)=m z^{n-1} 1\right)_{[0,1]}^{1}(z) \\
& E(z)=\int_{0}^{1} z f_{z}(z)=m \int_{0}^{1} z^{n} d z=\frac{m}{n+1}
\end{aligned}
$$

Tornisms al coso generele.

$$
\begin{aligned}
& F_{w}(w)=P\left(\min \left(X_{1}, X_{2}, \ldots, X_{n}\right) \leq w\right)=1-P\left(\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)>w\right) \\
& =1-P\left(X_{1}>w, X_{2}>w, \ldots, X_{n}>w\right)=1-P\left(X_{1}>w\right) P\left(X_{2}>w\right) \cdots P\left(X_{n}>w\right) \\
& =1-\left(1-F_{1}(w)\right)\left(1-F_{2}(w)\right) \cdots\left(1-F_{m}(w)\right)
\end{aligned}
$$

Exmpio $X_{1}, X_{2}, \ldots, X_{n}$ indipenglenti $X_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right)$
$W=\operatorname{mix}\left(X_{1, \ldots}, X_{n}\right)$. Riscivians la farmile precodente

$$
\begin{aligned}
& 1-F_{w}(w)=\prod_{i=1}^{m}\left(1-F_{x_{i}}|w|\right) \quad(w \geqslant 0) \\
& 1-F_{x_{i}}(w)=P\left(x_{i}>w\right)=e^{-\lambda_{i} w} \\
& \Rightarrow 1-F_{w}(w)=\prod_{i=1}^{m} e^{-\lambda_{i} w}=e^{-\left(\lambda_{1}+\cdots+\lambda_{n}\right) w} \\
& \Rightarrow \quad W \sim E_{x p}\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{m}\right)
\end{aligned}
$$

Escmpis $\quad X \sim g_{e}\left(p_{1}\right) \quad Y_{\sim} g_{e}\left(p_{2}\right) \quad W=\sin (x, y)$

$$
\begin{gathered}
n \geqslant 0 \quad P(W>m)=P(X>n) P(Y>m)=\left(1-p_{1}\right)^{n}\left(1-p_{2}\right)^{n} \\
P(W=m)=P(W>n-1)-P(W>n) \\
\left.=\left(1-p_{1}\right)^{m-1}\left(1-p_{2}\right)^{n-1}-\left(1-p_{1}\right)^{m} \mid 1-p_{2}\right)^{n} \\
=(\underbrace{\left(1-\left(1-p_{1}\right)\left(1-p_{2}\right)\right.}_{q})\left[\left(1-p_{1}\right)\left(1-p_{2}\right)\right]=q(1-q)^{n-1} \\
\Rightarrow W \sim g_{e}(q)
\end{gathered}
$$

