SERIE STORICHE

Padova, 15 settembre 2017

Nome	Cognome	N. matricola	
------	---------	--------------	--

Corso di Laurea

1 [6]	2 [3+3]	3 [4]	4 [6]	5 [4]	6 [4]	Totale

Domanda 1 Sia $Y_t = A + X_t$, dove A è una variabile casuale con $E[A] = \mu_A$, $Var(A) = \sigma_A^2$ indipendente dal processo stocastico stazionario X_t , per il quale si ha $E[X_t] = \mu_X$ e $Cov(X_t, X_{t-k}) = \gamma_k$. Si calcolino funzione media e autocovarianza del processo Y_t e si dica se è stazionario.

Soluzione:

- $E[Y_t] = E[A + X_t] = E[A] + E[X_t] = \mu_A + \mu_X$ per ogni t.
- $Var(Y_t) = Var(A + X_t) = Var(A) + Var(X_t) + 2Cov(A, X_t) = \sigma_A^2 + \sigma_X^2$ per ogni t, in quanto A e X_t sono indipendenti.
- $Cov(Y_t, Y_{t-k}) = Cov(A + X_t, A + X_{t-k}) = Cov(A, A) + Cov(A, X_{t-k}) + Cov(X_t, A) + Cov(X_t, X_{t-k}) =$ (sempre per l'indipendenza fra A e X_t) = $Var(A) + Cov(X_t, X_{t-k}) = \sigma_A^2 + \gamma_k$ che non dipende da t ma solo dal ritardo k.

Pertanto, il processo Y_t è stazionario.

Domanda 2 Dato il processo $Y_t = \phi Y_{t-2} + \epsilon_t \text{ con } \epsilon_t \sim WN(0, \sigma_\epsilon^2)$

- 1. Si dica per quali valori di ϕ il processo è stazionario.
- 2. Si calcoli la $Var(Y_t)$.

Soluzione:

- 1. Il processo è stazionario se le radici dell'equazione $(1 \phi B^2) = 0$ sono in modulo maggiori di uno. Tali radici sono $B_{1,2} = \pm \sqrt{1/\phi}$. Quindi deve essere $|\pm \sqrt{1/\phi}| > 1$ da cui segue che deve essere $-1 < \phi < 1$.
- 2. $Var(Y_t) = Var(\phi Y_{t-2} + \epsilon_t) = \phi^2 Var(Y_{t-2}) + Var(\epsilon_t)$ In ipotesi di stazionarietà $Var(Y_t) = Var(Y_{t-2})$ quindi: $Var(Y_t) = \frac{\sigma_\epsilon^2}{1-\phi^2}$. (Si noti che per la positività della varianza deve essere $-1 < \phi < 1$)

Domanda 3

Si supponga che $Y_t = a + bt + S_t + X_t$, dove S_t è la componente stagionale deterministica e periodica con periodo pari a s, mentre X_t è un processo SARIMA $(p,0,q)(P,1,Q)_s$. Si determini quale modello segue il processo $W_t = (1 - B^s)Y_t$.

Soluzione:

$$W_t = Y_t - Y_{t-s}$$
= $(a + bt + S_t + X_t) - (a + b(t-s) + S_{t-s} + X_{t-s})$
= $bs + S_t - S_{t-s} + X_t - X_{t-s}$

e tenendo conto che $S_t = S_{t-s}$

$$= bs + (1 - B^s)X_t$$

pertanto W_t è un SARIMA $(p,0,q)(P,0,D)_s$ con costante pari a bs.

Domanda 4 Dato un modello SARIMA $(1,0,0)\times(0,1,1)_4$, calcolare la previsione con orizzonte temporale k=5 sapendo che:

- il parametro AR ϕ_1 è pari a -0,8;
- l'ultimo valore osservato della serie storica è $y_n = 3$;
- $\hat{y}_{n+1|n} = -2 \ e \ \hat{y}_{n+4|n} = 1.$

Soluzione: Esercizio 7.5 dell'eserciziario.

Il processo indicato si esprime nella forma:

$$(1 - \phi_1 B)(1 - B^4)Y_t = (1 - \Theta_1 B^4)\varepsilon_t.$$

Poiché

$$(1 - \phi_1 B)(1 - B^4) = 1 - \phi_1 B - B^4 + \phi_1 B^5,$$

il processo può essere riscritto nel modo seguente:

$$Y_t = \phi_1 Y_{t-1} + Y_{t-4} - \phi_1 Y_{t-5} + \varepsilon_t - \Theta_1 \varepsilon_{t-4}.$$

Il previsore di Y_{n+5} è dunque pari a:

$$\begin{array}{rcl} \hat{Y}_{n+5|n} & = & E_n[Y_{n+5}] \\ & = & \phi_1 E_n[Y_{n+4}] + E_n[Y_{n+1}] - \phi_1 E_n[Y_n] + \\ & & + E_n[\varepsilon_{n+5}] - \Theta_1 E_n[\varepsilon_{n+1}]. \end{array}$$

Il calcolo dei valori attesi condizionati avviene secondo le seguenti espressioni:

$$\begin{split} E_n[Y_{n+j}] &= & \left\{ \begin{array}{ll} y_{n+j} & j \leq 0 \\ \hat{y}_{n+j|n} & j > 0 \end{array} \right. \\ E_n[\varepsilon_{n+j}] &= & \left\{ \begin{array}{ll} e_{n+j} & j \leq 0 \\ 0 & j > 0 \end{array} \right. \end{split}$$

Pertanto, la previsione $\hat{y}_{n+5|n}$ è pari a

$$\hat{y}_{n+5|n} = \phi_1 \hat{y}_{n+4|n} + \hat{y}_{n+1|n} - \phi_1 y_n.$$

Sostituendo i valori noti nella precedente espressione otteniamo il risultato richiesto:

$$\hat{y}_{n+5|n} = -0.8 - 2 - (-0.8) \cdot 3$$

= -0.8 - 2 + 2.4 = -0.4.

Domanda 5 Data una serie storica x_1, x_2, \ldots, x_n , si dica quali sono gli stimatori della media, μ , della varianza, σ^2 e della funzione di autocovarianza, $\gamma(k)$ di tale serie.

Soluzione: vedi pg. 168 pr
g5.3del libro di testo.

Domanda 6 Data una serie storica mensile x_1, x_2, \ldots, x_n , si dica come stimare la componente tendenziale-ciclica tramite il metodo delle medie mobili.

Soluzione: vedi pg.98 prg 3.5 del libro di testo.